1, page 112, top: $P(z) = \text{Expected Value of } z^n = \mathbb{E}[z^n] = \sum_{n=0}^{\infty} f(n) z^n$.

2, page 133, last two formulas should have in the numerator $d S(d)$ rather than $L S(d)$.

Truncated from Above at L and
\[
\frac{\{E[X \wedge L] - L S(L)\} - \{E[X \wedge d] - d S(d)\}}{F(L) - F(d)}
\]
Truncated from Below at d

Truncated from Above at L
\[
\frac{\{E[X \wedge L] - L S(L)\} - \{E[X \wedge d] - d S(d)\}}{F(L) - F(d)} - d
\]
and Truncated and Shifted
from Below at d

2, page 738, sol. 33.32: $e^{-1/4}(1 - e^{-1/4})$

5, page 97, 4th line from the bottom: $0 = \sum x_i/\lambda - n - ne^{-\lambda}(1 - e^{-\lambda})$.

6, page 149: Inverse Gaussian, $\theta = \frac{1}{\sum 1/x_i/N - 1/X}$

6, page 163, Q. 10.48: $f(x; \beta) = x \exp\left[\frac{(x/\beta)^2}{2}\right] / \beta^2$

6, page 163, Q. 10.48: $f(x; \beta) = x \exp\left[\frac{(x/\beta)^2}{2}\right] / \beta^2$

6, page 519, Q. 30.67: with parameters α and θ

6, p. 770, sol. 11.17: $\frac{a - 1}{a + b - 2} = \frac{21 - 1}{21 + 14 - 2} = \frac{20}{33}$

6, p. 770, sol. 26.16, line 4: $80 \ln[S(1000)/S(500)] = 80 \ln[e^{1000/\theta}/e^{500/\theta}] = 80 \ln[e^{500/\theta}]$.

7, page 183, sol. 1.27: $2q_1 = (S(1) - S(3)) / S(1) = (1/2 - 1/10) / (1/2) = 4/5 = 0.8$.

8, solution 3.6: (1) The coefficient of variation for the Pareto is greater than 1 (or infinite). Thus the Standard for Full Credibility for Severity is: \(CV_{S}^{2} n_{0} > 1^{2} n_{0} = n_{0} \).