
! ! To Buyers of Mahler’s Guide to Advanced Ratemaking
! !           Howard C. Mahler, FCAS, MAAA  ! hmahler@mac.com

This study guide is split into two volumes: Sections 1 to 10, and Sections 11 and following.

In the electronic version use the bookmarks / table of contents in the Navigation Panel in 
order to help you find what you want.
You may find it helpful to print out selected portions, such as the Table of Contents.

Information in bold is more important to pass your exam. Information presented in italics (and 
subsections whose titles are in italics) should not be needed to directly answer exam questions. 
It is provided to aid the reader’s overall understanding of the subject. 

I have doubled underlined highly recommended questions to do on your first pass through the 
material, underlined recommended questions to do on your second pass, and starred additional 
questions to do on a third pass through the material.1  No questions were labeled from the 2011 
exam or later, in order to allow you to use them as practice exams.

Changes to the Exam 8 syllabus for Fall 2022: 
Update the National Council on Compensation Insurance, Experience Rating Plan Manual.
At the time of writing, I do not have this updated version of the plan.
I assume it will have updated tables, but be otherwise similar.
Please check my webpage for further information.
 
Exam 8 will not contain multiple-choice questions.2  All questions will require an essay response.

The CAS is not releasing exams starting with Fall 2020.

The CAS used computer based testing for the Fall 2020 Exam,
and expects to do so going forward. Be sure to check the CAS webpage for information.

My solutions to questions are intended to be model solutions.3  Often they are more detailed and 
contain more explanation than would be needed in order to get full credit. This was done in 
order to give you a clearer and better understanding of the subject material.4  

After you have done one of the more recent released exams, be sure to look closely at 
the CAS Examiner’s Report. See the sample solutions in the Examiner’s Reports, and 
read the comments of the examiners.

On numerical questions clearly label your final answer and show enough intermediate steps so 
someone can follow what you did. If there are a series of parallel calculations you can show just 
one of them. Of course, if writing down more helps you to do the problem, do so.

1 Obviously feel free to do whatever questions you want. This is just a guide for those who find it helpful.
2 I have removed the multiple choices from most past exam questions that had them.
3 In some cases, I even quote a reading word for word. This does not mean you need to be able to do so!
4 Sometimes much of what I say is directed at those students who did not answer a question correctly and need to 
learn more. In any case, you want to know as much as possible to help answer the question that will be on your 
exam, as opposed to whatever they happened to have asked on some past exam.



In the case of verbal questions, do not concentrate on grammar or complete sentences. Feel 
free to list or outline your ideas. The selected use of abbreviations can save some time. 

In any case, remember that spending considerable additional time to increase 80% credit to 
100% credit on a single question is usually not a good use of your limited exam time. You can 
come back later to a question, if you have the time.
As stated in the CAS Syllabus: “The model response to the typical essay question is brief, less 
than one-half of a written page. Be concise — candidates do not need to answer in complete 
sentences when a well-composed outline format is more appropriate. Candidates should not 
waste time on obscure details. They should show that they have learned the relevant material 
and that they understand it. They should state the obvious, if it is part of the answer.” 

Also read “The Importance of Adverbs on Exams,” in which the Exam Committee notes the 
difference between: briefly discuss, discuss, and fully discuss.5   
“Brief descriptions, discussions, etc., are worth 1/4 point.
(Unmodified) discussions or descriptions are worth 1/2 point. 
Full descriptions or discussions are worth at least 1 point.
Please look carefully for these word choices and point values on all CAS upper-level exams.   
Most importantly, answer the question in accordance with the amount of information being 
asked.”  

The CAS is gradually moving towards an integrative testing framework. 
Integrative Questions (IQs) will require candidates to understand multiple facets of the 
syllabus material and concepts in addressing complex business problems in a single exam 
question. IQs will differ from a typical exam question in three significant ways.
! 1.! An IQ will be worth more points. One IQ could be worth 10-15% of the total exam.
! 2.! Each IQ will require candidates to draw from multiple syllabus learning objectives
! !  in order to answer the question.
! 3.! IQs will test at a higher average Bloom’s Taxonomy level 
! ! than a standard exam question.

To assist candidates with preparing to answer an IQ, the CAS released sample IQs and 
responses.6  It should be noted that while the samples were constructed in parallel with the IQ 
that will appear on the exam, they may not be structured in the same manner nor cover the 
same learning objectives as the exam question. It is advised that candidates use the samples to 
validate preparation and identify potential areas for improvement after completing the majority of 
their study, rather than using them during their initial study as one might use text book exercises.

Exam 8 featured one IQ on the Fall 2017 exam, 
and two each on the Fall 2018 and Fall 2019 exams.

It is expected that Exams 7, 8, and 9 will continue to include IQs in future sittings, and the 
number of IQs that will appear on the exams will gradually increase over time. At the same time, 
there will be fewer exam questions overall to account for the presence of IQs in order to avoid 
any increase in the time length of the exam. There will be no change to the normal grading 
process, as described in the Syllabus, for IQs.

5 http://www.casact.org/admissions/index.cfm?fa=adverbs
6 See the CAS webpage for updated information.

http://www.casact.org/admissions/index.cfm?fa=adverbs
http://www.casact.org/admissions/index.cfm?fa=adverbs


In March 2022 the CAS added New Questions to the CBT Sample Exams 5-9.7
Sample questions 12 and 13 are from the unreleased Fall 2021 Exam 8.8
I have included them in my Sections 1 and 22.    .

My study guide includes question written by me, and some by Sholom Feldblum.9  In addition, 
the former exam questions are arranged in chronological order. The more recent exam 
questions are on average more similar to what you will be asked on your exam, than are less 
recent questions. 

Note that In some cases, numerical values shown in one of my spreadsheets are unrounded, 
while the corresponding value in my text may be rounded.

It is important that you do problems when learning a subject and then some more problems 
a few weeks later. 
As you get closer to the exam, the portion of time spent doing problems should increase.

There are two manners in which you should be doing problems. First you can do problems in 
order to learn the material. Take as long on each problem as you need to fully understand the 
concepts and the solution. Reread the relevant syllabus material. Carefully go over the solution 
to see if you really know what to do. Think about what would happen if one or more aspects of 
the question were revised. This manner of doing problems should be gradually replaced by the 
following manner as you get closer to the exam.

The second manner is to do a series of problems under exam conditions, with the items you will 
have when you take the exam. Take in advance a number of points to try based on the time 
available. For example, if you have an uninterrupted hour, then one might try 60 / 4 = 15 points 
of problems. Do problems as you would on an exam in any order, skipping some and coming 
back to some, until you run out of time. Leave time to double check your work.

It is important that you develop the skill of quickly and clearly writing down what you know.
Many of you will benefit by giving some of your solutions to questions to someone else to 
“grade”.10  They should give you feedback on whether they were able to follow what you did.11 
They should point out where you wrote more than was necessary or not enough. 

Read the “Hints on Study and Exam Techniques” in the CAS Syllabus. 

The CAS has posted a pdf on Bloom’s Taxonomy of question writing.
You might want to look at it.
http://www.casact.org/admissions/syllabus/Blooms-Taxonomy.pdf

7 https://abe-prd-1.pvue2.com/st2/driver/startDelivery?sessionUUID=972271b1-7c06-4e8f-8a4b-499d4e047cd0
8 Also in the Sample Questions are Fall 2019 questions 17 and 19, which are in my study guide.
9 I thank Sholom Feldblum for the kind permission to use his material. Any mistakes are my responsibility.
10 Someone else taking this exam or who has just passed this exam would be a good choice. 
11 On average you get less credit on essay questions when graded by someone else then when you self-grade.

http://www.casact.org/admissions/syllabus/Blooms-Taxonomy.pdf
http://www.casact.org/admissions/syllabus/Blooms-Taxonomy.pdf
https://abe-prd-1.pvue2.com/st2/driver/startDelivery?sessionUUID=972271b1-7c06-4e8f-8a4b-499d4e047cd0
https://abe-prd-1.pvue2.com/st2/driver/startDelivery?sessionUUID=972271b1-7c06-4e8f-8a4b-499d4e047cd0


I thank Sholom Feldblum for the kind permission to use his material. 
I thank Roger Wilk for kindly providing me with his notes on Clark, and Grossi & Kunreuther.
Finally, thanks to the many past students who have helped me to improve these study guides.

Sold separately are my seminar style slides. They are electronic.

Feel free to send me any questions or suggestions: hmahler@mac.com 
Please send me any suspected errors by Email. 
(Please specify as carefully as possible the page and Exam number.)  

I will post a list of errata on my webpage: www.howardmahler.com/Teaching 

Preparing for a CAS Exam--what to do with hard material
! by Dr. J. Eric Brosius, FCAS
 
The syllabus for a typical CAS exam includes both easy and hard material. Many students learn 
the easy material well, but adopt less-than-optimal strategies for learning the hard material. 
Some spend a lot of time trying to understand syllabus readings that are nearly 
incomprehensible. Others ignore the more difficult readings altogether. Neither approach is a 
good idea, not if you hope to pass! I will suggest a better way to approach these readings. 
Your goal in studying is not to understand the material in general but to be able to answer the 
questions. Do not study the syllabus readings in a vacuum; consider also what types of 
questions are likely to be asked. Each exam contains both easy problems and hard problems. 



We can divide the problems into four categories based on the difficulty of the material and the 
difficulty of the problem, as follows: 
!

!

Box 1 contains easy problems on easy material. These are easy to answer; unfortunately, there 
are not enough of them! 

Box 2 contains hard problems on easy material. You can prepare for these by practicing 
problems from old tests and other sources of sample problems. 

Box 3 contains hard problems on hard material. Few students can afford to spend the time 
required to answer all of these. Fortunately, the Examination Committee does not ask many of 
these question: even if they understand the reading well enough to do so, there isn't much point 
in a question that no one can answer. Be prepared to skip Box 3 problems if necessary.  

Box 4 contains easy problems on hard material. These problems can supply the extra points you 
need to change a "5" into a “6". They appear often, because the Examination Committee tends 
to ask easy questions about hard readings. When a reading is technically difficult, and especially  
if it was recently added to the syllabus, even the simplest question poses a challenge. Study 
these readings with an eye to answering the obvious questions. It is a shame not to get points 
for a question that could have been answered if only you had read the first paragraph of the 
reading. 

Plan for your exam in such a way that you focus on Box 2 and Box 4. Prepare for Box 2 
questions by studying the easy material in detail, and by doing many sample problems. Prepare 
for Box 4 questions by outlining the high points of the material, and by trying to guess, alone or 
with other students, what questions on this material might appear on the exam.!



Use whatever order to go through the material that works best for you.
Here is a schedule that may work for some people.
Modify it to meet your own needs.
In any case, leave plenty of time to go back and review material.

A 14 week Study Schedule for Exam 8:

Week Sections of Study Guide

1 1-2

2-3 3

4 4-6

5-6 7

7 8-9

8 10-12

9-10 13-14

11 15-16

12 17-18

13 19-20

14 21-24



Since 2011, the points on exam questions are similar to the present. Going back a few more 
years further in time, a 5 point exam question might only be worth 3 points today.12  

Exam 8 Points Number of 
Questions

Integrated 
Questions

Average % of Exam
per Integrated Question

2011 59 25

2012 54.75 23

2013 57.5 25

2014 60.25 25

2015 59.5 23

2016 53.25 21

2017 53.75 20 1 15.8%

2018 52 17 2 17.8%

2019 52.5 19 2 10.5%

The CAS has stopped releasing pass marks:

Exam 8 Pass Mark Percent of Available Points 95th Percentile 75th Percentile

2011 43.75 74.15% 47.38 43.00

2012 37.75 68.95% 44.25 39.75

2013 40.75 70.87% 47.50 43.63

2014 37.50 62.24% 44.50 40.63

2015 40.75 68.49% 48.50 43.13

2016 37.25 69.95% 42.88 38.88

2017 37.5 69.77% 43.00 39.50

2018 33.75 64.91% 47.38 43.00

2019 37 70.48% 42.88 38.50

12 For my problems, it depends on when I wrote them.
My older ones are probably more like the older exam questions as far as points go.
I am sorry that my study guides are not more consistent with respect to “points”.
The CAS stopped releasing exams with the Fall 2020 exam.



Exam 8 Exams Taken Passed Raw Pass Ratio Effective Pass Ratio

2011 418 93 22.2% 23.9%

2012 519 218 42.0% 43.7%

2013 592 283 47.8% 49.3%

2014 729 350 48.0% 50.2%

2015 771 313 40.60% 42.18%

2016 791 301 38.05% 40.13%

2017 945 376 39.8% 41.7%

2018 953 314 32.9% 35.1%

2019 1080 376 34.8% 37.0%

2020 228 86 37.7% 41.1%

S2021 174 66 37.9% 42.0%

F2021 900 316 35.1% 38.5%

2022 870 329 37.8% 39.8%

One measure of the difficulty of an exam is the ratio of the 75th percentile to the available points:

Exam 8 Points 75th Percentile Ratio

2011 59 43.00 72.9%

2012 54.75 39.75 72.6%

2013 57.5 43.63 75.9%

2014 60.25 40.63 67.4%

2015 59.5 43.13 72.5%

2016 53.25 38.88 73.0%

2017 53.75 39.50 73.5%

2018 52 35.00 67.3%

2019 52.5 38.50 73.3%

The lower the ratio of the 75th percentile to the available points, the harder the exam.
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Information in bold or sections whose title is in bold are more important for passing the exam. 
Larger bold type indicates it is extremely important. Information presented in italics (including 
subsections whose titles are in italics) should rarely be needed to directly answer exam 
questions and should be skipped on first reading. It is provided to aid the reader’s overall 
understanding of the subject, and to be useful in practical applications. 

I have doubled underlined highly recommended questions to do on your first pass through the 
material, underlined recommended questions to do on your second pass, and starred additional
questions to do on a third pass through the material.1  No questions were labeled from the 2011 
exam or later, in order to allow you to use them as practice exams.

Solutions to problems are at the end of each section.2

2023-CAS8! ! Advanced Ratemaking! !      HCM 5/20/23,  !   Page 1

1 Obviously feel free to do whatever questions you want. This is just a guide for those who find it helpful.
2 Note that problems include both some written by me and some from past exams. The latter are copyright by the 
Casualty Actuarial Society and are reproduced here solely to aid students in studying for exams. The solutions and 
comments are solely the responsibility of the author; the CAS bears no responsibility for their accuracy. While some 
of the comments may seem critical of certain questions, this is intended solely to aid you in studying and in no way 
is intended as a criticism of the many volunteers who work extremely long and hard to produce quality exams. 
There are also some past exam questions copyright by the Society of Actuaries.



Volume Section # Pages Section Name

one 1 9-110 Mahler, An Example of Credibility and Shifting Risk Parameters
one 2 111-213 Bailey & Simon, Credibility of a Single Car
one 3 214-589 Goldburd, Khare and Tevet, Generalized Linear Models
one 4 590-621 ASOP 12: Risk Classification
one 5 622-713 Robertson, NCCIʼs 2007 Hazard Group Mapping

one 6 714-797 Couret & Venter, Class Frequency Vectors
one 7 798-1140 Clark, Reinsurance Pricing
one 8 1141-1226 Bernegger, Exposure Curves
one 9 1227-1407 Grossi & Kunreuther, Catastrophes
one 10 1408-1530 Experience Rating

two 11 1531-1613 NCCI Experience Rating Plan
two 12 1614-1717 ISO Experience Rating Plan
two 13 1718-1818 Frequency and Loss Distributions
two 14 1819-2144 Bahnemann, Distributions for Actuaries
two 15 2145-2269 Lee Diagrams, Loss Distributions

two 16 2270-2409 Retrospective Rating
two 17 2410-2507 Table M Construction
two 18 2508-2599 NCCI Retrospective Rating
two 19 2600-2691 Table L
two 20 2692-2790 Lee Diagrams, Retrospective Rating

two 21 2791-2820 Limited Table M
two 22 2821-2852 Other Loss Sensitive Plans
two 23 2853-2970 Pricing Large Dollar Deductible Policies
two 24 2971-2988 Concluding Remarks, Individual Risk Rating

For Fall 2020, the CAS went back to computer based testing.
The CAS stopped releasing exams, starting with the 2020 Exam.

CAS Sample Q.11 (from the Fall 2021 Exam 8) is in my Section 1.
CAS Sample Q.6 (from the Fall 2021 Exam 8) is in my Section 22.

2023-CAS8! ! Advanced Ratemaking! !      HCM 5/20/23,  !   Page 2



! ! ! ! Past Exam Questions by Section

Sec. 1995
Exam 9

1996
Exam 9

1997
Exam 9

1998
Exam 9

1 Mahler, Shifting Risk Parameters 10, 31 20 44, 45, 46 13, 14, 25
2 Bailey & Simon, Cred. Single Car 6, 30, 32 50 19 26
3 Goldburd, Khare and Tevet, GLMs
4 ASOP 12: Risk Classification 18 15, 22
5 Robertson, Hazard Group Mapping

6 Couret & Venter, Class Freq.
7 Clark, Reinsurance Pricing
8 Bernegger, Exposure Curves
9 Grossi & Kunreuther, Catastrophes

10 Experience Rating 20, 40, 42 4, 27, 28c&d 31a, 32 18, 37b, 38, 39

11 NCCI Experience Rating Plan 16, 41 24, 25 10, 34 17, 20, 36
12 ISO Experience Rating Plan 17 1, 21, 22, 23 9, 33 41
13 Frequency and Loss Distributions
14 Bahnemann, Distrib. for Actuaries 11, 33, 35 36, 38, 41, 42 13, 36a, 40a 30a, 31, 33, 34
15 Lee Diagrams, Loss Distributions 39 37 29

16 Retrospective Rating 21, 22, 24, 
44, 46, 47 29, 31, 32, 34 1, 27 4, 44c,

42, 47
17 Table M Construction 45 10 22, 23
18 NCCI Retro. Rating 46
19 Table L 25 30, 35 43
20 Lee Diagrams, Retro. Rating 50 4, 26

21 Limited Table M
22 Other Loss Sensitive Plans
23 Pricing LDD Policies
24 Conclud. Remarks, Indiv. Risk Rat.

Some questions are based on more than one syllabus reading, particularly on recent exams.3
In any case, sometimes it is unclear what is the best section in which to put a question.
In those cases, I have made one of the possible reasonable choices of where to put a question.

2023-CAS8! ! Advanced Ratemaking! !      HCM 5/20/23,  !   Page 3

3 Integrated questions involve several different syllabus readings.



Sec. 1999
Exam 9

2000
Exam 9

2001
Exam 9

2002
Exam 9

1 Mahler, Shifting Risk Parameters 48 34 1
2 Bailey & Simon, Cred. Single Car 1 32 2, 22 47
3 Goldburd, Khare and Tevet, GLMs
4 ASOP 12: Risk Classification 2, 43b 48
5 Robertson, Hazard Group Mapping

6 Couret & Venter, Class Freq.
7 Clark, Reinsurance Pricing
8 Bernegger, Exposure Curves
9 Grossi & Kunreuther, Catastrophes

10 Experience Rating 12, 13, 31 1, 4, 40

11 NCCI Experience Rating Plan 28 17, 42 25 33
12 ISO Experience Rating Plan 30 2 27 11, 12, 34
13 Frequency and Loss Distributions
14 Bahnemann, Distrib. for Actuaries 35, 38, 40, 41 39 11, 35, 37c 41, 42
15 Lee Diagrams, Loss Distributions 34, 39 37 43

16 Retrospective Rating 5, 6, 9,  21,
22, 23, 25 5, 6, 44 8, 9, 10, 

31, 32, 34
14, 15, 16,

35, 40
17 Table M Construction 19, 48 30 36
18 NCCI Retro. Rating
19 Table L 26 45 38, 39
20 Lee Diagrams, Retro. Rating 17

21 Limited Table M
22 Other Loss Sensitive Plans
23 Pricing LDD Policies 42 38 1
24 Conclud. Remarks, Indiv. Risk Rat.
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Sec. 2003
Exam 9

2004
Exam 9

2005
Exam 9

2006
Exam 9

1 Mahler, Shifting Risk Parameters 21 3 2
2 Bailey & Simon, Cred. Single Car 22 2 3 2
3 Goldburd, Khare and Tevet, GLMs 25 5
4 ASOP 12: Risk Classification 23
5 Robertson, Hazard Group Mapping 9

6 Couret & Venter, Class Freq.
7 Clark, Reinsurance Pricing
8 Bernegger, Exposure Curves
9 Grossi & Kunreuther, Catastrophes

10 Experience Rating 2, 6, 26, 28 15, 16, 39 26 23, 27

11 NCCI Experience Rating Plan 27 24, 27 24
12 ISO Experience Rating Plan 3, 4, 5 14, 41 28 28
13 Frequency and Loss Distributions

14 Bahnemann, Distrib. for Actuaries 13, 37, 38, 43 5, 6, 19
25, 26

6, 7, 10
23a, 35 6, 8

15 Lee Diagrams, Loss Distributions

16 Retrospective Rating 7, 10, 31, 
32, 33

18, 20, 
45, 47 31, 32 30, 32, 35

17 Table M Construction 43 8 9
18 NCCI Retro. Rating
19 Table L 30 44 7
20 Lee Diagrams, Retro. Rating 8, 9, 29 4, 17 33 29, 34

21 Limited Table M
22 Other Loss Sensitive Plans
23 Pricing LDD Policies 35 46, 48 34, 36 31, 33, 36
24 Conclud. Remarks, Indiv. Risk Rat.
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Sec. 2007
Exam 9

2008
Exam 9

2009
Exam 9

2010
Exam 9

1 Mahler, Shifting Risk Parameters 6
2 Bailey & Simon, Cred. Single Car 2 5 4 5
3 Goldburd, Khare and Tevet, GLMs 4a 3 3 3
4 ASOP 12: Risk Classification
5 Robertson, Hazard Group Mapping

6 Couret & Venter, Class Freq.
7 Clark, Reinsurance Pricing
8 Bernegger, Exposure Curves
9 Grossi & Kunreuther, Catastrophes

10 Experience Rating 26 23 20 23

11 NCCI Experience Rating Plan 25, 28 25 21 20
12 ISO Experience Rating Plan 27 24 22 21
13 Frequency and Loss Distributions
14 Bahnemann, Distrib. for Actuaries 7, 8, 10 26, 27 17, 18, 26 17, 26
15 Lee Diagrams, Loss Distributions 24

16 Retrospective Rating 32, 35 36 28, 30, 31 27, 29
17 Table M Construction 30, 34 28
18 NCCI Retro. Rating
19 Table L 32, 33 32
20 Lee Diagrams, Retro. Rating 31 29 25, 31

21 Limited Table M
22 Other Loss Sensitive Plans
23 Pricing LDD Policies 33, 36 30, 31 29a 28
24 Conclud. Remarks, Indiv. Risk Rat. 27 24

2023-CAS8! ! Advanced Ratemaking! !      HCM 5/20/23,  !   Page 6



Sec. 2011
Exam 8

2012
Exam 8

2013
Exam 8

2014
Exam 8

1 Mahler, Shifting Risk Parameters 3
2 Bailey & Simon, Cred. Single Car 1 6 5
3 Goldburd, Khare and Tevet, GLMs 3 2, 4 2 3
4 ASOP 12: Risk Classification
5 Robertson, Hazard Group Mapping 4 1 4 2

6 Couret & Venter, Class Freq. 2 5 3 1, 4

7 Clark, Reinsurance Pricing 7, 8 7, 10 21, 23, 25 20, 21, 22
23, 25

8 Bernegger, Exposure Curves 9 8 20, 22
9 Grossi & Kunreuther, Catastrophes 5, 6 9 24 24

10 Experience Rating 15, 16b&c 11, 16a&c 9, 10b 9, 11

11 NCCI Experience Rating Plan 12 13 10
12 ISO Experience Rating Plan 14 14 8 8
13 Frequency and Loss Distributions
14 Bahnemann, Distrib. for Actuaries 10, 17 15 6 7
15 Lee Diagrams, Loss Distributions 11 22 6

16 Retrospective Rating 20, 21, 25 19, 23 14 17
17 Table M Construction 12 13
18 NCCI Retro. Rating
19 Table L 18 13
20 Lee Diagrams, Retro. Rating 22 21 15 12, 18

21 Limited Table M
22 Other Loss Sensitive Plans
23 Pricing LDD Policies 18, 19 20 16, 19 16, 19
24 Conclud. Remarks, Indiv. Risk Rat. 23

Added for the 2011 Exam: Bernegger, Robertson, Couret & Venter, Grossi & Kunreuther.
Clark Reinsurance Pricing was on Exam 6 prior to 2011.

For the 2016 exam, Goldburd, M.; Khare, A.; and Tevet, D., “Generalized Linear Models for 
Insurance Rating,” replaced Anderson, D.; Feldblum, S; Modlin, C; Schirmacher, D.; 
Schirmacher, E.; and Thandi, N., “A Practitioner’s Guide to Generalized Linear Models” 

2023-CAS8! ! Advanced Ratemaking! !      HCM 5/20/23,  !   Page 7



Sec. 2015
Exam 8

2016
Exam 8

2017
Exam 8

2018
Exam 8

2019
Exam 8

1 Mahler, Shifting Risk Parameters 4
2 Bailey & Simon, Cred. Single Car 1 1 3 3 3
3 Goldburd, Khare and Tevet, GLMs 3 4, 5, 6, 7 4, 5, 6 5, 6, 7 2, 5, 6
4 ASOP 12: Risk Classification 3 4
5 Robertson, Hazard Group Mapping 6 2 2 4

6 Couret & Venter, Class Freq. 5 1
7 Clark, Reinsurance Pricing 21, 23 20 19 15 17, 18
8 Bernegger, Exposure Curves 20 21 18
9 Grossi & Kunreuther, Catastrophes 22 18, 19 20 16, 17 19

10 Experience Rating 10, 11, 12 11 11 9, 10 9, 10, 11

11 NCCI Experience Rating Plan 9, 10
12 ISO Experience Rating Plan 9 9, 10 11
13 Frequency and Loss Distributions 1*
14 Bahnemann, Distrib. for Actuaries 8a 7, 8, 14 8, 13 13
15 Lee Diagrams, Loss Distributions 7 12

16 Retrospective Rating 15, 16, 17 13, 15, 17 14 14, 15*
17 Table M Construction 12 16 7*, 12
18 NCCI Retro. Rating
19 Table L 14
20 Lee Diagrams, Retro. Rating 13

21 Limited Table M 16
22 Other Loss Sensitive Plans 1*
23 Pricing LDD Policies 13, 14, 18, 19 15, 16 2*, 12 8
24 Conclud. Remarks, Indiv. Risk Rat.

ASOP No. 12 Risk Classification was added to the syllabus for 2017.  
It replaced American Academy of Actuaries  “Risk Classification Statement of Principles.” 
For the 2017 exam, many previous readings were replaced by: 
a CAS Study Note “Individual Risk Rating,” by Fisher, McTaggart, Petker, and Pettingell, 
and a CAS Monograph “Loss Distributions for Actuaries,” by Bahnemann.
For the 2020 Exam, the NCCI Retro Manual was replaced by the NCCI Circular CIF-2018-28.
Integrated questions (which cover material in more than one section) are marked with a star.4

The CAS stopped releasing exams, starting with the 2020 Exam.

2023-CAS8! ! Advanced Ratemaking! !      HCM 5/20/23,  !   Page 8

4 The 2017 Exam 8 Sample Integrative Question is in Section 23.



Section 3, Generalized Linear Models, Goldburd, Khare, and Tevet1

Generalized Linear Models are widely used by actuaries in ratemaking, loss reserving, etc.

GLMs can be thought of as a generalization of multiple linear regressions.
However, the distribution of random errors need not be Normal.
Common distributions for the errors are:
Normal, Poisson, Gamma, Binomial, Negative Binomial, Inverse Gaussian, and Tweedie.

Also there is a link function that connects the linear combination of variables and the
thing to be modeled.
Common link functions are: identity, inverse, logarithmic, logit, and inverse square.
In a linear model, the link function is equal to the identity function.
In a multiplicative model, the link function is logarithmic; this is analogous to an Exponential 
regression.

Generalized Linear Models are fit via maximum Iikelihood. 

Our goal in modeling is to find the right balance where we pick up as much of the systematic 
effects (called the signal) as possible and as little of the randomness in the data (called the 
noise).

Based on the syllabus reading, I do not expect you to be asked to fit a model. Rather you should 
concentrate on how to set up a GLM, choose between different models, and how to interpret 
computer output. 

Therefore, do not get bogged down in the mathematical details of some of the examples I give, 
which are provided for those who find that concrete examples help them to learn the material.

This CAS Study Note also discusses some things that apply to most modeling and actuarial 
work, rather than just to GLMs.
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1 Generalized Linear Models for Insurance Rating, by Mark Goldburd, Anand Khare, and Dan Tevet,
CAS monograph.   
Only Chapter 1 to 9 are on the syllabus. 
A previous edition was added to the syllabus for 2016; this updated edition was added for 2020.
The updated edition has added: Section 5.4.5 Natural Cubic Splines, 
Section 6.3.2 Working Residuals (and associated Appendix),
Chapter 8 Model Documentation.  (The old Chapter 8 is the new Chapter 9.)
Other small additions were made here and there in the new edition. 
You might also find it useful to glance at “Predictive Models, A Practical Guide for Practitioners and Regulators”,
by Don Closter and Caryn Carmean, a short 2019 CAS White Paper, not on the syllabus.



Types of Variables: 

Variables can be continuous: size of loss, height, weight, Body Mass Index (BMI), etc.

Variables can be discrete: number of children, number of claims in the last three years, etc.

Variables can be categorical; there are a discrete number of categories.
The different possible values that a categorical variable can take on are called its levels.

In the case of nominal variables, the categories do not have a natural order. 
For example, type of vehicle: sedan, SUV, truck, van.

Sometimes however, the categories have a natural order; such variables are called ordinal. 
For example injuries may be categorized as: minor, serious, catastrophic, and fatal. 
This also occurs when a continuous variable is grouped into categories.

Additive and Multiplicative Models:

When one uses the identity function, the model is additive:
µ = β0 + β1x1 + ... + βpxp.
This is analogous to a linear regression.

For example, µ = 100 + 5x1 - 3x2.
Each increase of 1 in x1 results in an increase of 5 in m.
Each increase of 1 in x2 results in an decrease of 3 in m.

When one uses the log link function, the model is multiplicative:
ln[µ] = β0 + β1x1 + ... + βpxp.

� 

⇔ µ = exp[β0 + β1x1 + ... + βpxp].
This is analogous to an exponential regression.

For example, µ = exp[5 + 0.2x1 - 0.1x2].
Each increase of 1 in x1 results in µ being multiplied by e0.2 = 1.221.
Each increase of 1 in x2 results in µ being multiplied by e-0.1 = 0.905.
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Advantages of Multiplicative Rating Structures:2 

1. A multiplicative plan guarantees positive premium.
Having additive terms in a model can result in negative premiums, which doesn’t make sense; 
you may have to implement clunky patches like minimum premium rules.

2. A multiplicative model has more intuitive appeal. 

“It doesn’t make much sense to say that having a violation should increase your auto premium 
by $500, regardless of whether your base premium is $1,000 or $10,000. Rather it makes more 
sense to say that the surcharge for having a violation is 10%.”3 4 

“For these and other reasons, log link models, which produce multiplicative structures, are 
usually the most natural model for insurance risk.”

Nevertheless, sometimes a multiplicative model (model using a log link function) does not do a 
good job of modeling the data, while a different link function does a better job. This is an 
empirical issue. Most factors in insurance rating algorithms are multiplicative, however it is not 
uncommon to also have additive elements as well.5 

Even if one uses a log link function, when interaction terms are included in a model, the 
structure of the model will no longer have all of the nice features of a multiplicative model.
For example: µ = exp[5 + 0.2x1 - 0.1x2 + 0.03x1x2].
Now the effect of a change in x1 depends on the value of x2, while the effect of a change in x2 
depends on the value of x1.  For example, in private passenger auto insurance, the effect on 
expected pure premiums of gender varies by age.

Also keep in mind that for a binary or binomial target variable, for example whether or not a 
policy is renewed, a logit link function is commonly used as will be discussed.
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2 See page 5 of Generalized Linear Models for Insurance Rating.
3 This is an empirical question. For example, a more complicated surcharge such as $100 plus 10% of base 
premium might be a better prediction of the extra future expected costs. 
4 It would be extremely unusual to pay $10,000 or more as a base premium for private passenger automobile.
Perhaps they are referring to commercial automobile. In any case, the $10,000 is just for illustrative purposes.
5 Chapter 2 of “Basic Ratemaking” by Werner and Modlin has some examples.



Other Uses of GLMs:6 

While GLMs are commonly used for classification ratemaking, the benefits of GLMs are not
restricted to the application of pricing.
The following are a few of the other applications for which insurance companies are using 
GLMs:

● Practitioners are using GLMs to reduce a variety of risk variables into one score. This has
! obvious application in regards to creating underwriting tiers, credit scores, fire protection
! scores, vehicle symbols, etc.

● Many companies have begun to perform elasticity modeling. By building elasticity models for
! new and renewal business, companies can predict the impact of various actions on 
! market share. A few companies are already linking the profitability and elasticity models 
! to find the optimal pricing decision.

● Claims handlers are starting to see the advantages of GLMs and are using them to help set 
! more accurate reserves and to provide early identification of claims that may be 
! fraudulent or are most likely to end up in a lawsuit.

● Competitive analysis units are using GLMs to reverse-engineer competitors' rates given a 
! large sample of rating quotes.
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6 Quoted from “GLM Basic Modeling: Avoiding Common Pitfalls,” by Geoff Werner and Serhat Guven,
CAS Forum Winter 2007, not on the syllabus.



Common Link Functions:

g(µ) = ∑βixi. ⇔ µ = g-1(∑βixi).
The xi are the predictor or explanatory variables. 
The βi are the coefficients, which are to be fit.
βx = ∑βixi, is the linear predictor.
g is the link function, whose form needs to be specified.

The link function must satisfy the condition that it be differentiable and monotonic (either strictly 
increasing or strictly decreasing). Common link functions to use include: 

Identity g(µ) = µ g-1(y) = y µ = βx

Log g(µ) = ln(µ) g-1(y) = ey µ = eβx

Logit g(µ) = ln[µ/(1 - µ)]      g-1(y) = ey

ey + 1
         µ = eβx

eβx + 1

Reciprocal g(µ) = 1/µ g-1(y) = 1/y  µ = 1 / (βx) 

With more than one variable, the use of the log link function results in a familiar multiplicative 
model for classification relativities. 
One can also use other powers as a link function, such as g(µ) = 1/µ2 or g(µ) = µ .

Let p be the probability of policy renewal. Then 0 < p < 1.
Thus, 0 < p / (1 - p) < ∞.
Applying the logit link function, -∞ < ln[p / (1 - p)] < ∞.
So we have converted the domain from 0 to 1 to a range of minus infinity to infinity.

The inverse of the logit link function, ey

ey + 1
, converts the interval from minus infinity to infinity to 

the interval from zero to one, which would be appropriate for probabilities.7 

Exercise: µ = eβx

eβx + 1
.  Determine µ for βx = -2, βx = 0, and βx = 2.

[Solution: e-2 / (e-2 + 1) = 0.119.  e0 / (e0 + 1) = 0.5.  e2 / (e2 + 1) = 0.881.
Comment: These all make sense as probabilities.]
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7 Note that F(x) = ex / (ex + 1), -∞ < x < ∞ is the logistic function.



Here is a graph of the logit link function, ln( x
1 - x

 ), for 0 < x < 1, with range -∞ to ∞:

!

Here is a graph of the inverse of the logit link function, the logistic function: ex / (ex + 1),
-∞ < x < ∞, with range 0 to 1:

!
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It is common to pick the form of the variable X, to be a member of an exponential family. 
In that case, there are corresponding “canonical link functions”.8 

Canonical Link Functions:

Distribution Form Canonical Link Function

Normal Identity

Poisson Log: ln(μ)

Gamma  Reciprocal: 1/μ

Binomial            Logit: ln[µ/(1-µ)]

Inverse Gaussian 1/μ2

Using the canonical link function makes the estimate from the GLM unbiased.

The Normal Distribution is used for example in ordinary linear regression.
The Poisson Distribution could be used to model claim frequencies or claim counts.
The Gamma Distribution could be used to model claim severities.9 
The Binomial Distribution could be used to model probability of policy renewal.10 
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8 While these choices result in some nice mathematical properties, they are not required. 
9 If used to model claim severities, one could use the log link function, ln(µ).
10 The use of the logit link function with the Binomial or special case Bernoulli is the idea behind logistic regression.  



Structure of Generalized Linear Models:

One can state the assumptions of a Generalized Linear Model as: 

1. Random component: Each component of Y, the target variable is independent and 
! is from one of the exponential family of distributions.11  
!

2. Systematic component: 
! The p explanatory variables are combined to give the linear predictor X β.

3. Link function: The relationship between the random and systematic components is 
! specified via a link function, g, that is differentiable and monotonic such that: 
! ! E[Y] = μ = g-1(X β). ⇔ X β = g(μ).

The target variable, also called the dependent variable,Y, is the thing being modeled; it may be: 
frequency, severity, pure premiums, loss ratios, or something like the probability of policy 
renewal.

The predictor variables, also called response variables or independent variables, x’s, the things 
being used as inputs to the model, can be things like: age, gender, amount of insurance, etc.

The linear predictor has an intercept β0 plus p slopes: η = β0 + β1x1 + ... + βpxp.
η = g(µ).

Several different models may be fit to the same data, with one or more of the above features 
differing. Then the models would be compared using the output diagnostics, in order to 
determine the best model to use for the purpose.12
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11 Y is a vector; “each component” of Y refers to the elements of that vector.
12 Similar diagnostics are available as for a multiple linear regression.



A One Dimensional Example of Generalized Linear Models:13 

Let us assume a set of three observations: (1, 1), (2, 2), (3, 9).

The predictor variable x takes on the values 1, 2, and 3 for the observations.14  
The target variable Y takes on the values 1, 2 and 9 for the observations.

In a generalized linear model, Y will have some distributional form. The mean of the distribution 
will vary with x. However, any other parameters will be constant.

For now let us assume the identity link function, g(µ) = µ, so that µ = ∑βixi = β0 + β1 x.15 
Thus for now we are fitting a straight line. In general, the identity link function leads to a linear 
model.

Assume that Y is Poisson, with mean µ.16

µ = β0 + β1 x.

For the Poisson Distribution as per Loss Models, f(y) = e-λ λy / y!. 

ln f(y) = -λ + yln(λ) - ln(y!) = -µ + yln(µ) - ln(y!).
 
The loglikelihood is the sum of the contributions from the three observations:
-(β0 + β1) - (β0 + 2β1) - (β0 + 3β1) + ln(β0 + β1) + 2ln(β0 + 2β1) + 9ln(β0 + 3β1) 
! - ln(1) - ln(2) - ln(9!).

To maximize the loglikelihood, we set its partial derivatives equal to zero.
Setting the partial derivative with respect to β0 equal to zero:
0 = -3 + 1/(β0 + β1) + 2/(β0 + 2β1) + 9/(β0 + 3β1).
Setting the partial derivative with respect to β1 equal to zero:
0 = -6 + 1/(β0 + β1) + 4/(β0 + 2β1) + 27/(β0 + 3β1).

Solving these two equations in two unknowns: β0 = -12/5 = -2.4 and β1 = 16/5 = 3.2.17

µ = -2.4 + 3.2x.  For x = 1, µ = 0.8.  For x = 2, µ = 4.0.  For x = 3, µ = 7.2.18 
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13 I do not expect you to have to go into this level of detail on your exam.
See page 15 of “A Practitioners Guide to Generalized Linear Models,” by Duncan Anderson, Sholom Feldblum, 
Claudine Modlin, Dora Schirmacher, Ernesto Schirmacher and Neeza Thandi, in the 2004 CAS Discussion Paper 
Program, not on the syllabus of this exam.
14 It is not clear in this example whether x can take on values other than 1, 2 and 3.  These may be the only 
possible values, or they might be the three values for which we happen to have had an observation. In practical 
applications, when x is discrete, we would expect to have many observations for each value of x. 
15 I have treated x0 as the constant 1 and x1 as the predictor variable x.
16 In the case of a Poisson, there are no additional parameters beyond the mean.
17 I used a computer to solve these two equations.  One can confirm that these values satisfy these equations.
18 This differs from what would be obtained if one assumed Y was Normal rather than Poisson.



This model should be interpreted as follows. For a given value of x, Y is Poisson Distributed with 
mean = -2.4 + 3.2x.  For example, for x = 3, the mean = 7.2.  However, due to random 
fluctuation, for x = 3 we will observe values of Y varying around the expected value of 7.2.19   
If we make a very large number of observations of individuals with x = 3, then we expect to 
observe a Poisson Distribution of outcomes with mean 7.2.

As discussed, another important decision is the choice of the link function.
In this example, let us maintain the assumption of a Poisson Distribution, but instead of the 
identity link function let us use the log link function.

ln(µ) = ∑βixi = β0 + β1x. ⇒ µ = exp[∑βixi] = exp[β0 + β1x]. 

f(y) = e-λ λy / y!. 

ln f(y) = -λ + yln(λ) - ln(y!) = -µ + yln(µ) - ln(y!) = -exp[β0 + β1x] + y(β0 + β1x) - ln(y!). 

The loglikelihood is the sum of the contributions from the three observations:
-exp[β0 + β1] - exp[β0 + 2β1] - exp[β0 + 3β1] + β0 + β1 + 2(β0 + 2β1) + 9(β0 + 3β1) 
! - ln(1) - ln(2) - ln(9!).

To maximize the loglikelihood, we set its partial derivatives equal to zero.
Setting the partial derivative with respect to β0 equal to zero:
0 = -exp[β0 + β1] - exp[β0 + 2β1] - exp[β0 + 3β1] + 12.

Setting the partial derivative with respect to β1 equal to zero:
0 = -exp[β0 + β1] - 2exp[β0 + 2β1] - 3exp[β0 + 3β1] + 32.

Thus we have two equations in two unknowns:
exp[β0 + β1]{1 + exp[β1] + exp[2β1]} = 12.
exp[β0 + β1]{1 + 2exp[β1] + 3exp[2β1]} = 32.

Dividing the second equation by the first equation:
1 + 2exp[β1] + 3exp[2β1]
1 + exp[β1] + exp[2β1]

 = 8/3. 

⇒ exp[2β1] - 2exp[β1] - 5 = 0.
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Letting v = exp[β1], this equation is: v2 - 2v - 5 = 0, with positive solution v = 1 + 6  = 3.4495.
exp[β1] = 3.4495. ⇒ β1 = 1.238.
⇒ exp[β0] = 12/{exp[β1] + exp[2β1] + exp[3β1]} = 12/{3.4495 + 3.44952 + 3.44953} = 0.2128.
⇒ β0 = -1.547.

µ = exp[β0 + β1x] = exp[β0] exp[β1]x = (0.2128)(3.4495x).
For x = 1, µ = 0.734.  For x = 2, µ = 2.532.  For x = 3, µ = 8.735.
This differs from the result obtained previously when using the identity link function:

x Observed Poisson, Identity Link Poisson, Log Link Function

1 1 0.8 0.734
2 2 4.0 2.532
3 9 7.2 8.735

Here is the same information in the form of a graph, with the data shown as dots:

In general, the choice of a link function makes a difference.
Using the log link function we got an exponential model rather than a linear model. With more 
explanatory variables, the log link function gives a multiplicative rather than an additive model.
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Exponential Families:

Linear Exponential Families include:
Bernoulli, Binomial (m fixed), Poisson, Geometric, Negative Binomial (r fixed),
Exponential, Gamma (α fixed), Normal (σ fixed), Inverse Gaussian (θ fixed), 
and the Tweedie Distribution. 

Confusingly, when working on GLMs, “Exponential Family” means “Linear Exponential Family.”20 
This is how the syllabus reading refers to them, and thus from now on I will do the same.

Exponential Families have two parameters, µ the mean, and φ the dispersion parameter.
The dispersion parameter is related to the variance. In a GLM φ is fixed across the observations 
and is treated as a nuisance parameter, in the same way that σ is treated in multiple regression.

It turns out that the relationship between the mean and variance uniquely identifies which linear 
exponential family we have.
Var[Y] = φ V(µ), where the form of V(µ) depends on which exponential family we have.

If the variance does not depend on the mean, then we have a Normal Distribution.
If the variance is proportional to the square of the mean, then we have a Gamma Distribution.
If the variance is proportional to the cube of the mean, then we have a Inverse Gaussian 
Distribution.
If the variance is proportional to the mean and we have a discrete distribution, then we have a 
Poisson Distribution.

For the Gamma Distribution, f(y) = (y/θ)α exp[-y/θ] / (y Γ[α]).  E[Y] = αθ.  Var[Y] = αθ 2. 
If used in a GLM, then we are assuming that we have a Gamma Distribution with α fixed.
Then, Variance = αθ2 = (αθ)2/ α = (mean)2 / α.
Thus for the Gamma Distribution (with α fixed) the variance is proportional to the square of the 
mean.
For the Gamma Distribution: V(µ) = µ2 and φ = 1/α.

For the following members of the exponential family of distributions, where μ is their 
mean, their variance is proportional to μp: 
● Normal distribution, p = 0.
● Poisson distribution, p = 1.
● Gamma distribution, p = 2.
● Tweedie distribution, 1 < p < 2. 
● Inverse Gaussian distribution, p = 3. 
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20 Linear Exponential families are defined via the form of their density; however, this definition is not on the syllabus 
of this exam.



The syllabus reading gives a  list of V(µ) for different exponential families.21 
The syllabus reading does not go into detail on how to relate the parameterization of exponential 
families using µ and φ to that which you may already be familiar from for example Loss Models.
However, in order to make things a little more concrete here is a table.

Distribution µ φ V(µ)

Normal µ σ2 1

Poisson λ 1 µ

Gamma αθ 1/α µ2

Inverse Gaussian µ 1/θ µ3

Negative Binomial β/κ 1 µ(1 + κµ)

Binomial mq 1 µ (1 - µ/m)

Tweedie µp

As discussed subsequently, for the overdispersed Poisson φ > 1.

Gamma as per Loss Models, with mean = αθ and variance = αθ2, with α fixed.

Inverse Gaussian as per Loss Models, with mean = µ and variance = µ3/θ, with θ fixed.

For the Negative Binomial, κ = 1/r, fixed.  κ is called the overdispersion parameter.
As per Loss Models, the Negative Binomial has mean = r β and variance = r β (1+β).22

Binomial, as per Loss Models with m fixed, with mean = mq and variance = mq(1-q)23.  
m = 1 is a Bernoulli. Goldburd, Khare, and Tevet give V(µ) for the case where m = 1.

The Tweedie Distribution will be discussed subsequently.
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21 See Table 1 in Generalized Linear Models for Insurance Rating.
22 For the Negative Binomial Distribution, the dispersion parameter φ is restricted to be 1.
23 One could introduce overdispersion via a Beta-Binomial Distribution, not on the syllabus of this exam.
See for example Loss Models.



Gamma Distribution: 

f(x) = (x/θ)a exp[-x/θ] / (x Γ[α]), x > 0.24 
Mean = αθ. ! !
Variance = αθ2.! ! CV = 1/ α .
φ = 1/α.! !
V(µ) = µ2.

The Gamma Distribution is commonly used to model severity.

Here are graphs of the densities of Gamma Distributions with µ = 100 and φ = 1/5 or 1/2:25 
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The Gamma Distribution has support from 0 to infinity. The Gamma Distribution is right-skewed 
(has positive skewness), with a sharp peak and a long tail to the right.

Exercise: Determine the variance for a Gamma Distribution with µ = 20 and φ = 1/4.
[Solution: Variance = φ V(µ) = φ µ2 = (1/4)(202) = 100. 
Comment: The coefficient of variation is: 100 /20 = 1/2 = φ .]
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24 Parameterized as per Loss Models, not on the syllabus of this exam.
I do not expect you to need to know the density.
25 The first has α = 5 and θ = 20, while the second has α = 2 and θ = 50.



Inverse Gaussian Distribution:26 

As per Loss Models: f(x) = θ
2π

 
exp[-

θ  x
µ

 - 1⎛
⎝⎜

⎞
⎠⎟

2

2x
 ]

x1.5  , x > 0.27   

Mean = µ.! !
Variance = µ3 / θ. 
φ = 1/θ.! !
V(µ) = µ3.

The Inverse Gaussian Distribution can be used to model severity. The Inverse Gaussian 
Distribution is appropriate when the severity has a larger skewness than for a Gamma. 

Exercise: Determine the variance for an Inverse Gamma Distribution with µ = 20 and φ = 1/5.
[Solution: Variance = φ V(µ) = φ µ3 = (1/5)(203) = 1600.]

Graphs of the densities of Inverse Gaussian Distributions with µ = 100 and φ = 0.04 or 0.01:28 
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26 While the Gaussian (normal) describes a Brownian Motion's level at a fixed time, the Inverse Gaussian describes 
the distribution of the time a Brownian Motion with positive drift takes to reach a fixed positive level.
The cumulant generating function is the natural log of the moment generating function.
The cumulant generating function of an Inverse Gaussian is the inverse function of that of a Gaussian (Normal).
27 I do not expect you to need to know the density.
28 The first has θ = 25, while the second has θ = 100.



For the Gamma the variance is proportional to the square of the mean, 
while for the Inverse Gaussian the variance is proportional to the cube of the mean.
The Inverse Gaussian and Gamma are similar, but the Inverse Gaussian has larger skewness 
and a higher peak.29 

For example, a Gamma Distribution with µ = 10 and α = 2 has mean = 10, and 
variance = 102/2 = 50.  An Inverse Gaussian Distribution with µ = 10 and φ = 20 has mean = 10, 
and variance = 103/20 = 50.  Thus these two distributions have the same mean and variance.

Here is a graph comparing these two densities:

!
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The Inverse Gaussian Distribution has a higher peak than the Gamma Distribution.
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29 The skewness for the Gamma distribution is always twice times the coefficient of variation.
The skewness for the Inverse Gaussian distribution is always three times the coefficient of variation.



The Inverse Gaussian has more probability in the extreme righthand tail. With the aid of a 
computer, for this Gamma Distribution the survival function at 40 is S(40) = 0.30%, while for this 
Inverse Gaussian Distribution, S(40) = 0.58%.
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A Two Dimensional Example of Generalized Linear Models:30 

Let us assume we have two types of drivers, male and female, and two territories, urban and 
rural. Then there are a total of four combinations of gender and territory.
We assume an equal number of claims in each of the four combinations. 

Let us assume that we have the following observed severities:

Urban Rural

Male 800 500
Female 400 200

Let us assume the following generalized linear model:
Gamma Function
Reciprocal link function31

Define male and rural as the base level, which introduces a constant term.
Then the constant, β0, applies to all observations.
Let X1 = 1 if female and 0 if male.32 
Let X2 = 1 if urban and 0 if rural.33

1/µ = ∑βixi = β0 + β1x1 + β2x2 . ⇒ µ = 1
β0 + β1x1 + β2x2

. 

Therefore, the modeled means are:

Urban Rural

Male 1/(β0+β2) 1/β0
Female 1/(β0+β1+β2) 1/(β0+β1)

For the Gamma Distribution as per Loss Models, f(y) = (y/θ)a exp[-y/θ] / (y Γ[α]).
ln f(y) = (α-1)ln(y) - y/θ - αln(θ) - ln[Γ[α]] = (α-1)ln(y) - y/(µ/α) - αln(µ/α) - ln[Γ[α]]
           = (α-1)ln(y) - αy/µ - αln(µ) + αln(a) - ln[Γ[α]]
           = (α-1)ln(y) - αy(β0 + β1x1 + β2x2) + αln(β0 + β1x1 + β2x2) + αln(α) - ln[Γ[α]].
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30 I do not expect you to have to go into this level of detail on your exam.
See page 24 and Appendix F of “A Practitioners Guide to Generalized Linear Models,” by Anderson, et. al.
31 One could instead use the log link function, and obtain somewhat different results.
32 Since we have taken male as the base level, the covariate has to involve not male.
33 Since we have taken rural as the base level, the covariate has to involve not rural.



The loglikelihood is the sum of the contributions from the four observations:
(α-1){ln(800) + ln(400) + ln(500) + ln(200)} 
- α{800(β0 + β2) + 400(β0 + β1 + β2) + 500β0 + 200(β0 + β1)} 
+ α{ln(β0 + β2) + ln(β0 + β1 + β2) + ln(β0) + ln(β0 + β1)} + 4αln(α) - 4 ln[Γ(α)].

To maximize the loglikelihood, we set its partial derivatives equal to zero.
Setting the partial derivative with respect to β0 equal to zero:
0 = -α(800 + 400 + 500 + 200) + α{1/(β0 + β2) + 1/(β0 + β1 + β2) + 1/β0 + 1/(β0 + β1)}. 
⇒ 1/(β0 + β2) + 1/(β0 + β1 + β2) + 1/β0 + 1/(β0 + β1) = 1900.
Setting the partial derivative with respect to β1 equal to zero:
0 = -α(400 + 200) + α{1/(β0 + β1 + β2) + 1/(β0 + β1)}. ⇒ 1/(β0 + β1 + β2) + 1/(β0 + β1) = 600.
Setting the partial derivative with respect to β2 equal to zero:
0 = -α(800 + 400) + α{1/(β0 + β2) + 1/(β0 + β1 + β2)}. ⇒ 1/(β0 + β2) + 1/(β0 + β1 + β2) = 1200.

Solving these three equations in three unknowns:34

β0 = 0.00223811, β1 = 0.00171142, and β2 = -0.00106605. 

µ = 1
0.00223811 + 0.00171142x1 - 0.00106605x2

. 

For Male and Urban: x1 = 0, x2 = 1, and µ = 1 / (0.00223811 - 0.00106605) = 853.20.
For Female and Urban: x1 = 1, x2 = 1, 
and µ = 1 / (0.00223811 + 0.00171142 - 0.00106605) = 346.80.
For Male and Rural: x1 = 0, x2 = 0, and µ = 1/0.00223811 = 446.81.
For Female and Rural: x1 = 1, x2 = 0, and µ = 1/(0.00223811 + 0.00171142) = 253.20.

The fitted severities by cell are:35 

!
Urban Rural Average

Male 853.20 446.81 650.01
Female 346.80 253.20 300.00
Average 600.00 350.01 475.00
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34 I used a computer to solve these three equations. 
There is no need to solve for α in order to calculate the fitted pure premiums by cell. 
However, using a computer, the maximum likelihood alpha is 45.6.
35 The averages were computed assuming the same number of claims by cell. 



This compares to the observed severities by cell:

Urban Rural Average

Male 800 500 650
Female 400 200 300
Average 600 350 475

  
Notice how the averages for male, female, urban, and rural are equal for the fitted and 
observed. The overall experience of each class and territory has been reproduced by the model. 

In general, the estimates will be in balance as they were here, when one uses the canonical link 
function; the canonical link function for the Gamma is the reciprocal link function.36 

Exercise: 
For the Urban territory, what the relativity of male compared to female indicated by the GLM?
[Solution: 853.20/346.80 = 2.460.]

Exercise: 
For the Rural territory, what the relativity of male compared to female indicated by the GLM?
[Solution: 446.81/253.20 = 1.765.]

The relativities are different in the different territories. In general for a particular GLM, the 
relativities for one predictor variable can depend on the level(s) of the other predictor variable(s).

Here we have used the reciprocal link function. If instead the log link function had been used, 
the model would have been multiplicative, and the indicated multiplicative relativities would not 
have depended on territory. If instead the identity link function had been used, the model would 
have been additive, and the indicated additive relativities would not have depended on territory.

We could instead change the definitions of the covariates, and have a model without an 
intercept:
x1 = 1 if male.
x2 = 1 if female.
x3 = 1 if urban and x3 = 0 if rural. 

Then 1/µ = ∑βixi = β1x1 + β2x2 + β3x3. ⇒ µ = 1
β1x1 + β2x2 + β3x3

. 
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36 See “A Systematic Relationship Between Minimum Bias and Generalized Linear Models”, 
by Stephen J. Mildenhall, PCAS 1999, not on the syllabus. 



Therefore, the modeled means are:

Urban Rural

Male 1/(β1 + β3) 1/β1
Female 1/(β2 + β3) 1/β2

For the Gamma Distribution as per Loss Models, f(y) = (y/θ)a exp[-y/θ] / (y Γ[α]).
ln f(y) = (α-1)ln(y) - y/θ - αln(θ) - ln[Γ[α]] = (α-1)ln(y) - y/(µ/α) - αln(µ/α) - ln[Γ[α]]
           = (α-1)ln(y) - αy/µ - αln(µ) + αln(a) - ln[Γ[α]]
           = (α-1)ln(y) - αy (β1x1 + β2x2 + β3x3) + α ln(β1x1 + β2x2 + β3x3) + αln(α) - ln[Γ[α]].

The loglikelihood is the sum of the contributions from the four observations:
(α-1){ln(800) + ln(400) + ln(500) + ln(200)} 
- α{800(β1 + β3) + 400(β2 + β3) + 500β1 + 200β2} 
+ α{ln(β1 + β3) + ln(β2 + β3) + ln(β1) + ln(β2)} + 4 αln(α) - 4 ln[Γ[α]].

To maximize the loglikelihood, we set its partial derivatives equal to zero.
Setting the partial derivative with respect to β1 equal to zero:
0 = -α(800 + 500) + α{1/(β1 + β3) + 1/β1}. ⇒ 1/(β1 + β3) + 1/β1 = 1300.
Setting the partial derivative with respect to β2 equal to zero:
0 = -α(400 + 200) + α{1/(β2 + β3) + 1/β2}. ⇒ 1/(β2 + β3) + 1/β2 = 600.
Setting the partial derivative with respect to β3 equal to zero:
0 = -α(800 + 400) + α{1/(β1 + β3) + 1/(β2 + β3)}. ⇒ 1/(β1 + β3) + 1/(β2 + β3) = 1200.

Solving these three equations in three unknowns:37

β1 = 0.00223811, β2 = 0.00394952, and β3 = -0.00106605. 

µ = 1
0.00223811x1 + 0.00394952x2 - 0.00106605x3

. 

For Male and Urban: x1 = 1, x2 = 0, x3 = 1, and µ = 1 / (0.00223811 - 0.00106605) = 853.20.
For Female and Urban: x1 = 0, x2 = 1, x3 = 1, and µ = 1 / (0.00394952 - 0.00106605) = 346.80.
For Male and Rural: x1 = 1, x2 = 0, x3 = 0, and µ = 1/0.00223811 = 446.81.
For Female and Rural: x1 = 0, x2 = 1, x3 = 0, and µ = 1/0.00394952 = 253.20.

The modeled means are the same as in the other version of the model with a base level.
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Instead fit an Inverse Gaussian with the inverse square link function to this same data.38 39 

For the Inverse Gaussian: f(x) = θ
2π

 
exp[-

θ  x
µ

 - 1⎛
⎝⎜

⎞
⎠⎟

2

2x
 ]

x1.5 , mean = µ, variance = µ3 / θ.

Ignoring terms that do not involve µ, 

ln f(x) = -
θ  x

µ
 - 1⎛

⎝⎜
⎞
⎠⎟

2

2x
  = - θ

2x
 ( x

2

µ2
 - 2 x

µ
 + 1) = - θx

2µ2
 + θ

µ
 - θ
2x

.

Use x1 = 1 if male.
x2 = 1 if female.
x3 = 1 if urban and x3 = 0 if rural. 

Using the squared reciprocal link function: 1/µ2 = β1X1 + β2X2 + β3X3.
Thus ignoring terms that do not include µ, the loglikelihood is:
-θ
2

{800(β1 + β3) + 500(β1) + 400(β2 + β3) + 200(β2)} + θ{ β1 + β3  + β1  +  + β2 + β3 }.

Setting the partial derivative with respect to β1 equal to zero:

0 = -θ
2

{800 + 500} + θ
2

{1/ β1 + β3  + 1/ β1 }. ⇒ 1300 = 1/ β2 + β3  + 1/ β2 .

Setting the partial derivative with respect to β2 equal to zero:

0 = -θ
2

{400 + 200} + θ
2

{1/ β2 + β3  + 1/ β2 }. ⇒ 600 = 1/ β2 + β3  + 1/ β2 .

Setting the partial derivative with respect to β3 equal to zero:

0 = -θ
2

{800 + 400} + θ
2

{1/ β1 + β3  + 1/ β2 + β3 }. ⇒ 1200 = 1/ β1 + β3  + 1/ β2 + β3 . 

Solving these three equations in three unknowns:40

β1 = 0.0000054693, β2 = 0.0000134722, and β3 = -0.00000415544. 
1/µ2 = 0.0000054693x1 + 0.0000134722x2 - 0.00000415544x3. 
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38 Again assuming equal claims per cell.
39 While the inverse square is the canonical link function for the Inverse Gaussian, 
one could use a different link function.
40 I used a computer to solve these three equations. 
There is no need to solve for θ in order to calculate the fitted pure premiums by cell. 



For Male and Urban: x1 = 1, x2 = 0, x3 = 1, and 
µ = 1 / 0.0000054693 - 0.00000415544  = 872.42.
For Female and Urban: x1 = 0, x2 = 1, x3 = 1, and 
µ = 1 / 0.0000134722 - 0.00000415544  = 327.62.
For Male and Rural: x1 = 1, x2 = 0, x3 = 0, and µ = 1 / 0.0000054693  = 427.60.
For Female and Rural: x1 = 0, x2 = 1, x3 = 0, and µ = 1 / 0.0000134722  = 272.45.

The fitted severities by cell differ from the previous model and are as follows:41 

Urban Rural Average

Male 872.42 427.60 650.01
Female 327.62 272.45 300.04
Average 600.02 350.03 475.02

This compares to the observed severities by cell:

Urban Rural Average

Male 800 500 650
Female 400 200 300
Average 600 350 475

  
Notice how subject to rounding, again the averages for male, female, urban, and rural are equal 
for the fitted and observed. The overall experience of each class and territory has been 
reproduced by the model. 

In general, the estimates will be in balance as they were here, when one uses the canonical link 
function; the canonical link function for the Inverse Gaussian is the inverse square link 
function.42 
When the weights differ by cell, this balance involves weighted averages.
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41 The averages were computed assuming the same number of claims by cell. 
42 See “A Systematic Relationship Between Minimum Bias and Generalized Linear Models,” 
by Stephen Mildenhall, PCAS 1999, not on the syllabus.



Design Matrix:

As is the case for multiple regression, it is common in GLMs to work with a design matrix.
Each row of the design matrix corresponds to one observation in the data.43

Each column of the design matrix corresponds to a covariate in the model.
If there is an intercept or constant term in the model, then the first column refers to it;
the first column of the design matrix will then consist of all ones.

A one dimensional example, with one covariate plus an intercept, was discussed previously:
Three observations: (1, 1), (2, 2), (3, 9).
Y = β0 + β1X.

Then the design matrix is: 
1 1
1 2
1 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

.

Since the intercept applies to each observation, the first column is all ones.
The second column contains the observed values of the only covariate X.

Note that the design matrix depends on the observations and the definitions of the covariates.
The design matrix does not depend on the link function or the distributional form of the errors.

The response vector would contain the observed values of Y: 
1
2
9

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

.

The vector of parameters is: 
β0
β1

⎛

⎝
⎜

⎞

⎠
⎟ .

If one used the identity link function, then this model can be written as: E[Y] = X β,
where X is the design matrix and β is the vector of parameters. 
If instead one used the log link function, then this model can be written as: E[Y] = exp[X β].

In general, with a link function g, a GLM can be written as: E[Y] = g-1[X β].

With more covariates, things get a little more complicated. There is not a unique way to define 
the covariates. The important thing is to have the design matrix be consistent with the chosen 
definitions of the covariates.
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43 When we have more than one exposure or claim in a cell, a row may correspond to several observations 
grouped.



A two dimensional model was previously discussed:

Urban Rural

Male 800 500
Female 400 200

Usually on your exam, one would define a base level, which introduces a constant term.
For example, as before we could define male/rural as the base level.44 
Then the constant, β0, would apply to all observations.
Let X1 = 1 if female and 0 if male.45 
Let X2 = 1 if urban and 0 if rural.46

Then with link function g, the GLM is: g(E[Y]) = β0 + β1X1 + β2X2.

If we order the observations as follows, then the design matrix is: 

!

Male/Urban
Male/Rural

Female/Urban
Female/Rural

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ⇔ 

1 0 1
1 0 0
1 1 1
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 

The first column of ones corresponds to the constant term which applies to all observations.
The first row of the design matrix corresponds to male/urban: X1 = 0, X2 = 1.
The second row corresponds to male/rural: X1 = 0, X2 = 0.
The third row corresponds to female/urban: X1 = 1, X2 = 1.
The last row corresponds to female/rural: X1 = 1, X2 = 0.
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44 One could define any of the four combinations as the base level.
45 Since male is the base level, the covariate has to involve not male.
46 Since rural is the base level, the covariate has to involve not rural.



As stated previously, on your exam the model is likely to be defined with a base level. 
Nevertheless, one could instead define: 
X1 = 1 if male. (0 if female)
X2 = 1 if female. (0 if male)
X3 = 1 if urban and 0 if rural.
Then with link function g, the GLM is: g(E[Y]) = β1X1 + β2X2 + β3X3.

Then if we order the observations as before, then the design matrix is:47 

! !

Male/Urban
Male/Rural

Female/Urban
Female/Rural

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ⇔ 

1 0 1
1 0 0
0 1 1
0 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

The first row corresponds to male/urban: X1 = 1, X2 = 0, and X3 = 1.
The second row corresponds to male/rural: X1 = 1, X2 = 0, and X3 = 0.
The third row corresponds to female/urban: X1 = 0, X2 = 1, and X3 = 1.
The last row corresponds to female/rural: X1 = 0, X2 = 1, and X3 = 0.

The response vector would contain the observed values of Y, 
in the same order as the rows of the design matrix:

! !

Male/Urban
Male/Rural

Female/Urban
Female/Rural

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ⇔ 

800
500
400
200

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

The vector of parameters is: 
β1
β2
β3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.
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This definition of covariates is not unique. For example instead define:
X1 = 1 if urban. (0 if rural)
X2 = 1 if rural. (0 if urban)
X3 = 1 if female and 0 if male.

Exercise: For these definitions, what are the design matrix and the response vector?
[Solution: If we order the observations as before, then the design matrix is: 

!

Male/Urban
Male/Rural

Female/Urban
Female/Rural

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ⇔ 

1 0 0
0 1 0
1 0 1
0 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 

The response vector would contain the observed values of Y, 
in the same order as the rows of the design matrix:

! !

Male/Urban
Male/Rural

Female/Urban
Female/Rural

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ⇔ 

800
500
400
200

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

Comment: While the design matrix is different than before, this version of the model is just as 
valid as the previous ones, as long as everything is handled consistently.
The first row of the design matrix corresponds to male/urban: X1 = 1, X2 = 0, and X3 = 0.
The second row corresponds to male/rural: X1 = 0, X2 = 1, and X3 = 0.
The third row corresponds to female/urban: X1 = 1, X2 = 0, and X3 = 1.
The last row corresponds to female/rural: X1 = 0, X2 = 1, and X3 = 1.]
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Generalized Linear Models, An Example of Adding Dimensions:

Assume we have a one-dimensional model with two territories: Urban and Rural.
While there are several different ways to set up this model, let us define:
Urban is the base level, β0 is the intercept, X1 = 1 if Rural.

Let us now add another dimension, gender: Male or Female.

We can either let Female/Urban be the base level and X2 = 1 if Male, 
or let Male/Urban be the base level and X2 = 1 if Female.
In either case, we add only one more variable to the model we had for one dimension.

We could now add another dimension such as age: Young, Senior, Other. Regardless of which 
model we had for two dimensions, we would add two more variables to include age. Age has 
three levels, and in order to add it to our model we need to add 3 - 1 = 2 variables to the model.

Assume our model for two dimensions had:
Female/Rural as the base level, β0 is the intercept, with X1 = 1 if Urban, X2 = 1 if Male.
Then for example we could take: 
Female/Rural/Other as the base level, β0 is the intercept, with X3 = 1 if Young and X4 = 1 if 
Senior.

If the model has a base level and corresponding constant term, then each categorical 
variable introduces a number of covariates equal to the number of its levels minus 1. 

In this example, the number of covariates is: (constant term) + (2-1) + (2-1) + (3-1) = 5. 

In practical applications, it is important to choose the base level of each category to be 
one with lots of data. If the chosen base level has little data, then the standard errors of the 
coefficients will be larger than if one had chosen a base level with lots of data.48 
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standard errors of coefficients corresponding to levels with little data will be wider than those levels with more data.



For example, assume instead our model for two dimensions had:
No base level with X1 = 1 if Urban, X2 = 1 if Rural, and X3 = 1 if Male.
Then for example we could take: X4 = 1 if Young and X5 = 1 if Senior.

Without a base level and corresponding constant term, then one and only one of the categorical 
variables has a number of covariates equal to the number of its levels. 
Each of the other categorical variables introduces a number of covariates equal to the number 
of its levels minus one.

For this example, without a base level, territory has a number of covariates equal to its number 
of levels, while gender and age each have a number of covariates equal to their number of 
levels minus one. The total number of covariates is: 2 + (2-1) + (3-1) = 5, the same as before.

Design Matrices, Continuous Variables: 

We have looked at discrete categorical variables such as territory. GLMs can also use 
continuous variables such as amount of insurance and time living at current residence.49 With 
continuous variables, determining the design matrix is somewhat different than it is with discrete 
variables.

Let us assume we are modeling pure premiums for homeowners and observe five policies:
Policy Amount of Insurance ($000) Time at Residence Pure Premium ($000)

1 100 3 0
2 130 11 30
3 180 0 0
4 250 7 80
5 400 16 0

If X1 = Amount of Insurance and X2 = Time at Residence, 
then the design matrix and response vector are:

! X = 

100 3
130 11
180 0
250 7
400 16

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

! Y = 

0
30
0
80
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

.

The GLM is: g(E[Y]) = βX.
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Poisson Distribution:

f(x) = e-λ λx / x!, x = 0, 1, 2, ...
Mean = λ. !
Variance = λ.
φ = 1.! !
V(µ) = µ.

The Poisson Distribution is commonly used to model frequency.

Overdispersion: 

Var[Yi] = φ E[Yi].  Since for the Poisson φ = 1, the variance is equal to the mean.

When the variance is greater than the mean, one could use a Negative Binomial Distribution, 
which has a variance greater than its mean.50 

We can instead use an overdispersed Poisson with φ > 1.
Var[Yi] = φ E[Yi].  For φ > 1, variance is greater than the mean.
While this does not correspond to the likelihood of any exponential family, otherwise the GLM 
mathematics works.51 52 

Using an overdispersed Poisson (ODP), we get the same estimated betas as for the usual 
Poisson regression.53  
However, the standard errors of all of the estimated parameters are multiplied by φ . 54 

Although not mentioned in the syllabus readings, the usual estimator of the dispersion 

parameter φ is: φ̂  = 1
n - p

 (yi  - µi)2
µii=1

n
∑ .
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50 One way the variance can be greater than the mean is if frequency is Poisson for each insured, but the means of 
the Poissons vary between insureds. If the Poisson means follow a Gamma Distribution, then the mixed distribution 
is a Negative Binomial Distribution.
51 This is called using a quasi-likelihood, although the syllabus reading dos not use that term. 
52 Often using a Negative Binomial Distribution or an overdispersed Poisson approach to fit a GLM will produce 
similar results.
53 This is the same reason we can fit the betas in a Normal regression without fitting σ.
54 The variance of the estimated parameter is multiplied by φ.



Negative Binomial Distribution:

f(x) = Γ(x+r)
x! Γ(r)

 βx

(1+β)x+r
 = Γ(x+1/κ)

x! Γ(1/κ)
 (κµ)x
(1+κµ)x+r

, x = 0, 1, 2, ...

Mean = rβ = β/κ. !
Variance = rβ(1+β) = (β/κ) (1+β).
φ = 1.! ! !
V(µ) = µ(1 + κµ).

κ = 1/r is called the overdispersion parameter.
As κ approaches zero while keeping the mean constant, the Negative Binomial Distribution 
approaches a Poisson Distribution.55 

The Negative Binomial Distribution has its variance greater than its mean.
One way a Negative Binomial Distribution arises is as a Gamma mixture of Poisson 
Distributions.

The Negative Binomial Distribution is used to model frequency.

Here is a graph comparing a the densities of a Poisson with mean 5, 
and a Negative Binomial with mean 5 and κ = 1/2 (r = 2):

!

Poisson

Negative Binomial

5 10 15 20 25 30
x

0.02

0.04

0.06

0.08

0.10

0.12

density
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One Dimensional Poisson Example with Exposures:

Exposures are a measure of how much insurance protection has been provided. Car years are 
an example. If one insures three cars each for two years, that is 6 car years of exposure.

Assume the same three observations: (1, 1), (2, 2), (3, 9).
However, let us assume 2, 3, and 4 exposures respectively.

Let us again fit a GLM using a Poisson with a log link function. 
λi = exp[β0 + xβ1].

We assume that Yi is Poisson, with mean ni λi, 
where ni is the number of exposures for observation i.
For example, the third observation is Poisson with mean: 4 exp[β0 + 3β1].

For the Poisson Distribution, ln f(y) = -λ + yln(λ) - ln(y!).
Thus the contribution to the loglikelihood from the third observation is:
-4 exp[β0 + 3β1] + 9 {ln4 + (β0 + 2β1)} - ln[9!].

The loglikelihood is the sum of the contributions from the three observations:
-2 exp[β0 + β1] - 3 exp[β0 + 2β1] - 4 exp[β0 + 3β1] + (β0 + β1) + 2(β0 + 2β1) + 9(β0 + 3β1) 
! + ln[2] + 2 ln[3] + 9 ln[4] - ln(1) - ln(2) - ln(9!).

To maximize the loglikelihood, we set its partial derivatives equal to zero.
Setting the partial derivative with respect to β0 equal to zero:
0 = -2 exp[β0 + β1] - 3 exp[β0 + 2β1] - 4 exp[β0 + 3β1] + 12.
Setting the partial derivative with respect to β1 equal to zero:
0 = -2 exp[β0 + β1] - 6 exp[β0 + 2β1]) - 12 exp[β0 + 3β1] + 32.

Solving these two equations in two unknowns: β0 = -1.97234 and β1 = 0.91629.56

µi = ni exp[-1.97234 + 0.91629 xi]. 

For x = 1, µ = 2 exp[-1.97234 + 0.91629] = 0.696.
For x = 2, µ = 3 exp[-1.97234 + (2)(0.91629)] = 2.609.  
For x = 3, µ = 4 exp[-1.97234 + (3)(0.91629)] = 8.696.
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56 I used a computer to solve these two equations.  One can confirm that these values satisfy these equations.



Offsets, Poisson Model with Log Link Function: 

When fitting a Poisson Distribution with a log link function, it is common to state the model with 
an offset term which is ln[exposures]. 
Offset terms are used to adjust for group size or differing time periods of observation.

With the log link function: λi = exp[ηi]. We assume that Yi is Poisson, with mean ni λi, 
where ni is the number of exposures for observation i. 
µi = ni λi = ni exp[ηi]. 

� 

⇔ ln[μi] = ln[ni] + ηi. 57

Thus we have rewritten the usual equation relating the mean to the linear predictor, η = Xβ, with 
an additional term, ln[ni] which is called the offset. Note that the offset involves a vector of 
known amounts, the number of exposures corresponding to each observation.

Computer software to fit GLMs will have an option to include an offset term. 

In the previous example: ln[µi] = ln[ni] + β0 + β1 xi. 

� 

⇔  µi = ni exp[β0 + β1 xi]. 
Thus the use of an offset term will produce an equivalent model and the same result as obtained 
previously taking into account exposures.

One can show that “a claim count model that includes exposure as an offset is exactly 
equivalent to a frequency model that includes exposure as a weight (but not as an offset)
—that is, they will yield the same predictions, relativity factors and standard errors.”58

Since the number of exposures are known quantities, if one predicts the number of claims one 
also predicts the claim frequency and vice versa. For the Poisson and a log link function, one 
can either use an offset of ln(exposures) in a claim count model, or one can use exposures as 
weights in a claim frequency model. The following table summarizes this equivalence:59

!
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57 In other words, the expected number of claims is proportional to exposures, such as car years.
58 “While this equivalence holds true for the Poisson (or overdispersed Poisson) distribution, it does not
work for the negative binomial distribution since the two approaches may yield different estimates of the negative
binomial parameter κ.”
59 Taken from Section 2.6 of Generalized Linear Models for Insurance Rating.



Offsets, When Updating Only Part of the Rating Plan:60 

“When updating deductible factors, it is frequently desirable to calculate them using traditional 
loss elimination-based techniques, while the GLM is used for factors other than deductible.”

Assume for example, one is updating other parts of the rating algorithm, but is leaving the 
deductible credits the same.61  The current deductibles and credits are a follows:

$500 Base
$1000 8% credit
$2500 14% credit

Then in a GLM for pure premium using a log link function:
! µ = exp[Xβ] fD,
where Xβ is the linear predictor (not taking into account deductible),
and fD is the appropriate deductible factor of: 1, 0.92, or 0.86.

ln[µ] = Xβ + ln[fD] = Xβ + offset.

This is mathematical the same as the use of an offset in the case of a Poisson frequency.
However, there the offset was ln[exposures] while here the offset is ln[1 - deductible credit].

If an observation is from a policy with a $500 deductible, then the offset is ln[1] = 0.
If an observation is from a policy with a $1000 deductible, then the offset is ln[1 - 0.08] = 
-0.0834.
If an observation is from a policy with a $2500 deductible, then the offset is ln[1 - 0.14] = 
-0.1508.

The expected pure premium for a policy with a $2500 deductible is lower than that of a similar 
policy with a $500 deductible. If the mix of deductibles varies by the other classification 
variables, then we know that completely ignoring deductibles would lead to distorted estimates 
of the effects of the other classification variables. The use of the offset term takes into account 
deductible; however, we are assuming the effects of deductibles are known based on the current 
credits and that there is no (significant) interaction of effects between deductible amount and 
other classification variables.

In general, an offset factor is a vector of known amounts which adjusts for known effects 
not otherwise included in the GLM.

“It is recommended that factors for coverage options—deductible factors, ILFs, peril group 
factors and the like—be estimated outside the GLM, using traditional actuarial loss elimination 
techniques. The resulting factors should then be included in the GLM as an offset.”
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60 See Section 2.6 of Generalized Linear Models for Insurance Rating.
61 Either you will update them at some later date, or the deductible credits will be determined by some technique 
other than by using a GLM.



As another example, one could take the current territories and territory relativities as givens, and 
include an offset term in a GLM of ln[territory relativity].

“Territories are not a good fit for the GLM framework. ... Since there are usually many 
complicated relationships between territory and other variables, your GLM should still consider 
territory. This is accomplished by including territory in your model as an offset.”

Offsets, General Mathematics:

The offset is added to the linear component: g(µi) = β0 + β1xi1 + β2xi2 + ...+ βpxip + offset.
While I have discussed offsets in the context of the log link function, offsets can be used with 
other link functions.  

For example, an actuary is planning to add a predictor to a model that estimates the probability 
of a policy having a claim. The actuary has decided to offset all of the current model variables 
before fitting the new variable. Given the following:
● The current model is a logit link binomial GLM (logistic regression).
● The current fitted probability without the new variable is 5% for an individual. 

The logit link function is defined as g(µ) = In ( µ
1 - µ

).

Thus the offset for this individual is: ln( 5%
1 - 5%

) = -2.944.

In a similar manner one would calculate an offset for each individual.
Where x is the new variable, one would now fit a model: g(µi) = β0 + β1xi +  offseti.62

Assume the fitted model was: β0 = -0.5 and β1 = 0.1.
Assume the same individual as before has a value of the new predictor of x = 8. 

Then: In ( µi
1 - µi

) = -0.5 + (0.1)(8) - 2.944 = -2.644. 

The new fitted probability of a claim for this individual is:  µi = exp[-2.644]
1 + exp[-2.644]

 = 6.6%.

Exercise: Another individual has a current fitted probability of 8%, and x = 2.
Calculate the revised fitted probability of having a claim for this individual.
[Solution: Offset = ln( 8%

1 - 8%
) = -2.442.  -0.5 + (0.1)(2) - 2.442 = -2.742. 

exp[-2.742]
1 + exp[-2.742]

 = 6.1%.

Comment: See 8, 11/18, Q.7.]
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62 The betas are not the same as shown previously. We would continue to use the same logit link function.



Prior Weights:63 

When observing numbers of claims, the volume of data is numbers of exposures. When 
observing sizes of claims, the volume of data is numbers of claims.64  When a given observation 
is based on more data we give it more weight.

Let us return to the example with two types of drivers, male and female, and two territories, 
urban and rural. Before we assumed an equal number of claims in each of the four 
combinations. 
Instead let us assume that the Urban/Male combination has twice the volume of the others; in 
other words Urban/Male has twice as many claims as each of other the other combinations.

Let us assume that we have the same observed average severities:

Urban Rural

Male 800 500
Female 400 200

Let us again assume the following generalized linear model:
Gamma Function
Reciprocal link function 
x1 = 1 if male.!
x2 = 1 if female.
x3 = 1 if urban and x3 = 0 if rural. 

Then 1/µ = ∑βixi = β1x1 + β2x2 + β3x3. ⇒ µ = 1
β1x1 + β2x2 + β3x3

. 

Therefore, the modeled means are:

Urban Rural

Male 1/(β1 + β3) 1/β1
Female 1/(β2 + β3) 1/b2

For the Gamma Distribution as per Loss Models, f(y) = (y/θ)a exp[-y/θ] / (y Γ[α]).
ln f(y) = (α-1)ln(y) - y/θ - αln(θ) - ln[Γ[α]] = (α-1)ln(y) - y/(µ/α) - αln(µ/α) - ln[Γ[α]]
           = (α-1)ln(y) - αy/µ - αln(µ) + αln(a) - ln[Γ[α]]
           = (α-1)ln(y) - αy(β0 + β1x1 + β2x2) + αln(β0 + β1x1 + β2x2) + αln(α) - ln[Γ[α]].  
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63 See Section 2.5 of Generalized Linear Models for Insurance Rating.
64 In Buhlmann Credibility, N is number of exposures when estimating frequency or pure premiums, but N is number 
of claims when estimating severity.



Since it now has twice the number of claims, we multiply the contribution from Urban/Male by 
two.

The loglikelihood is the sum of the contributions from the four combinations:
(α-1){2 ln(800) + ln(400) + ln(500) + ln(200)} 
- α{(2)(800)(β1 + β3) + 400(β2 + β3) + 500β1 + 200β2} 
+ α{2ln(β1 + β3) + ln(β2 + β3) + ln(β1) + ln(β2)}} + 5αln(α) - 5 l ln[Γ[α]].

To maximize the loglikelihood, we set its partial derivatives equal to zero.
Setting the partial derivative with respect to β1 equal to zero:
0 = -α(1600 + 500) + α{2/(β1 + β3) + 1/β1}. ⇒ 2/(β1 + β3) + 1/β1 = 2100.
Setting the partial derivative with respect to β2 equal to zero:
0 = -α(400 + 200) + α{1/(β2 + β3) + 1/β2}. ⇒ 1/(β2 + β3) + 1/b2 = 600.
Setting the partial derivative with respect to β3 equal to zero:
0 = -α(1600 + 400) + α{2/(β1 + β3) + 1/(β2 + β3)}. ⇒ 2/(β1 + β3) + 1/(β2 + β3) = 2000.

Solving these three equations in three unknowns:65

β1 = 0.00224451, β2 = 0.00392976, and β3 = -0.00103566. 
µ = 1 / (0.00224451x1 + 0.00392976x2 - 0.00103566x3). 

For Male and Urban: x1 = 1, x2 = 0, x3 = 1, and µ = 1 / (0.00224451 - 0.00103566) = 827.23.
For Female and Urban: x1 = 0, x2 = 1, x3 = 1, and µ = 1 / (0.00392976 - 0.00103566) = 345.53.
For Male and Rural: x1 = 1, x2 = 0, x3 = 0, and µ = 1/0.00224451 = 445.53.
For Female and Rural: x1 = 0, x2 = 1, x3 = 0, and µ = 1/0.00392976 = 254.47.

The fitted severities by cell are: 
!

Urban Rural

Male 827.23 445.30
Female 345.53 254.47

Which differ from those obtained previously when we had equal weights.
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65 I used a computer to solve these three equations. 
There is no need to solve for α in order to calculate the fitted pure premiums by cell. 



Let us examine what I did in a little more detail.

My contribution to the loglikelihood for Male/Urban was:
2 ln f(800) = 2{(α-1)ln(800) - 800/θ - αln(θ) - ln[Γ(α)]} 
= 2 {(α-1)ln(800) - 800α/µ - αln(µ/α) - ln[Γ(α)]}.
This is the same as assuming two claims each of size 800 were observed.

If instead, we had two claims, one of size 600 and one of size 1000, averaging to the same 800,
then the contribution to the loglikelihood for Male/Urban would be:
ln f(600) + ln f(1000) =
(α-1)ln(600) - 600α/µ - αln(µ/α) - ln[Γ(α)]] + (α-1)ln(1000) - 10000α/µ - αln(µ/α) - ln[Γ(α)]]
= (α-1) {ln(600) + ln(1000)} - 1600α/m - 2αln(µ/α) - 2 ln[Γ(α)]].

This differs from before by some constant times α - 1.  However, this does not affect the fitted 
maximum Iikelihood parameters; when we take a partial derivative with respect to βi these terms 
will drop out.

If we only use the fact that Urban/Male has two claims summing to 1600, then we can use the 
fact that the sum of two identically distributed Gammas has twice the alpha.66  The mean will 
also be twice as big, so that θ = µ/α would remain the same. Thus the contribution to the 
loglikelihood for Male/Urban would be the log density of this Gamma with 2α at 1600:
(2α-1)ln(1600) - 1600α/µ - 2αln(µ/α) - ln[Γ(α)]].

Again, this differs from before by terms that involve constants and alpha. However, this does not 
affect the fitted maximum Iikelihood parameters; when we take a partial derivative with respect 
to βi these terms will drop out.

The members of exponential families each have this nice property that the maximum Iikelihood 
fit only depends on the average and not the individual values.67

In general, when modeling severity, let the weights ωi be the number of claims. 

So for example, if an observation is the average size of 10 claims, then the variance will be 1/10 
of that for an observation of the size of a single claim. 

For example, for the Poisson, f(x) = λx e-λ / x!.  lnf(x) = x ln(λ) - λ - ln(x!).
If we have two (independent) exposures each with mean frequency x, then we can multiply the 
contribution to the loglikelihood by two: 2x ln(λ) - 2λ - 2 ln(x!).
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66 The other exponential families share the property that when one adds up independent, identical copies one gets 
anther member of the same family.
67 The mean is a sufficient statistic.



If we have two (independent) exposures each with Poissons with mean λ, then the number of 
claims is Poisson with mean 2λ.

Then with a sum of 2x, and an average frequency of x, the log density is: 
2x ln(2λ) - 2λ - ln(2x!) = 2x ln(λ) - 2λ - 2x ln(2) - ln(2x!).

Except for constants and terms involving x, this is the same loglikelihood as before.
Thus we would get the same maximum likelihood fit.
Thus when modeling claim frequencies, one can weight by the number of exposures.

When modeling claim frequency or pure premiums, let the weights be exposures.

When a weight is specified, the assumed variance for (the mean of) observation i is inversely 
proportional to the weight:68 ! Var[Yi] = φ V[µi] / ωi.
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being averaged.



A Three Dimensional Example of a GLM:69 

Here is a three dimensional example for private passenger automobile insurance claim 
frequency, with: age of driver, territory, and vehicle class.70  It is a multiplicative model, in other 
words a GLM with a log link function.71

There are 9 levels for driver age, 8 territories, and 5 classes of vehicle. An intercept term is 
used. Therefore, since each of the three factors is a categorical variable, each has one less 
parameter than its number of levels. In addition to the intercept term, there are 8 driver age 
parameters, 7 territory parameters, and 4 vehicle class parameters.

Choose age group 40-49, territory C, and vehicle class A, as the base levels.72 73 
Let β1 correspond to the intercept term, and assign the other parameters as follows:

Age of driverAge of driver TerritoryTerritory Vehicle classVehicle class

Factor level Parameter Factor level Parameter Factor level Parameter

17-21 β2 A β10 A 

22-24 β3 B β11 B β17 

25-29 β4 C C β18 

30-34 β5 D β12 D β19 

35-39 β6 E β13 E β20 

40-49 F β14 

50-59 β7 G β15 

60-69 β8 H β16 

70+ β9 

The total number of cells is: (9)(8)(5) = 360.
So the design matrix would have 360 rows, assuming that there are no cells lacking data.
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69 See pages 31 to 32 of “A Practitioner’s Guide to Generalized Linear Models,” by Duncan Anderson; 
Sholom Feldblum; Claudine Modlin; Doris Schirmacher; Ernesto Schirmacher; and Neeza Thandi, (Third Edition), 
CAS Study Note, February 2007.  Not on the syllabus of this exam.
70 Presumably, there would be another GLM fit to severity.
71 We are not told what distributional form is assumed, but it is probably Poisson. 
We are not given any details of the fitting or any diagnostics.
72 One could make another set of choices and should get the same fitted frequencies.
73 The standard errors of the fitted parameters are smaller if one chooses as the base level the one with the most 
exposures.



For example, the first row of the design matrix is probably for age 17-21, Territory A, 
and Class A, with ones in column 1, 2, and 10:74 
1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.

The last row of the design matrix is probably for age 70+, Territory H, and Class E,
with ones in column 1, 9, 16, and 20:
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1.

Exercise: For age 35-39, Territory F, and Class C, what does the corresponding row of the 
design matrix look like?
[Solution: Ones in columns 1, 6, 14, and 18:
1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0.]

The fitted parameters are an intercept term of 0.1412 and:75 76 
Age of driverAge of driver TerritoryTerritory Vehicle classVehicle class

Factor level Multiplier Factor level Multiplier Factor level Multiplier

17-21 1.6477 A 0.9407 A 1.0000

22-24 1.5228 B 0.9567 B 0.9595

25-29 1.5408 C 1.0000 C 1.0325

30-34 1.2465 D 0.9505 D 0.9764

35-39 1.2273 E 1.0975 E 1.1002

40-49 1.0000 F 1.1295

50-59 0.8244 G 1.1451

60-69 0.9871 H 1.4529

70+ 0.9466

The estimated frequency for a 40-49 year old driver, from Territory C and Vehicle Class A,
is 0.1412; the estimate for the base levels is the intercept term.77 
For example, a 22-24 year old driver, from Territory G and Vehicle Class D would have an 
estimated frequency of: (1.5228)(1.1451)(0.9764)(0.1412) = 0.2404.

Exercise: What is the estimated frequency for a 30-34 year old driver, from Territory B and 
Vehicle Class E?
[Solution: (1.2465)(0.9567)(1.1002)(0.1412) = 0.1853.]

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 254
  

74 How you arrange the rows of the design matrix does not affect the result, as long as everything is done 
consistently.
75 For example, the fitted value of β2 is ln(1.6447).  
The multipliers for the base levels are one by definition.
76 This is presumably illustrative rather than the output of a GLM fit in a practical application.
77 In order to estimate the overall average frequency, one would need the distribution of exposures by cell.



Tweedie Distribution:78 

Another (linear) exponential family is the Tweedie Distribution.
The Tweedie Distribution has mean µ and its variance is proportional to µp, for 1 < p < 2.79 80

The Tweedie Distribution is used to model pure premiums (losses divided by exposures)
or loss ratios; there is a point mass of probability at zero corresponding to no loss.   
The Tweedie Distribution is mathematically a special case of 
a Compound Poisson Distribution.

When the Tweedie is used in GLMs, p and φ are constant across all observations.

When using the Tweedie distribution, it turns out that an increase in pure premium is made up of 
both an increase in frequency and an increase in severity.81  Even if this assumption does not 
hold in an given application, the Tweedie GLM can still produce very useful and well fitting 
models of pure premium.

Details of the Tweedie Distribution:

It is a Poisson frequency with a Gamma severity, with parameters of the Poisson and Gamma:82 

λ = µ2-p

φ (2 - p)
, α = 2 - p

p - 1
, and θ = φ (p-1) µp-1.

Exercise: Verify the mean and variance of the Tweedie as a Compound Poisson.

[Solution: Mean = λ α θ = µ2-p

φ (2 - p)
 2 - p
p - 1

  φ (p-1) µp-1 = µ.  

Variance = λ (2nd moment of Gamma) = λ α(α+1)θ2 

!     = µ2-p

φ (2 - p)
 2 - p
p - 1

 1
p - 1

 {φ (p-1) µp-1}2 = φ µp.]

Exercise: What is the point mass at zero of the Tweedie as a Compound Poisson.
[Solution: This corresponds to the Poisson in the Compound Poisson being zero.
This has probability e-λ.]
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78 See Section 2.7.3 of Generalized Linear Models for Insurance Rating.
79 For insurance modeling, p is typically between 1.5 and 1.8. 
In some software packages, one can specify the Tweedie distribution, which will in turn cause the software package 
to find the best value for the power parameter, p, when solving for the parameters (betas) in the linear equation.
80 While the syllabus reading puts this restriction on p, mathematically p can be any nonnegative value other than 
0 < p < 1.
81 This is far from obvious. Why this is the case is discussed subsequently.
82 For use in a GLM, φ and α (and thus p) are fixed for all observations.



α = 2 - p
p - 1

.  

� 

⇒ p = α+2
α+1

.

As alpha, the shape parameter of the Gamma, approaches infinity, p approaches 1, and the 
Tweedie approaches a Poisson. For p near one, the CV of the Gamma is small, and most of the 
randomness is due to the Poisson frequency.83  As alpha approaches zero, p approaches 2, and 
the Tweedie approaches a Gamma. 

Several of the other exponential family distributions are in fact special cases of Tweedie,
dependent on the value of p:
• A Tweedie with p = 0 is a Normal distribution.
• A Tweedie with p = 1 and φ = 1 is a Poisson distribution.84

• A Tweedie with p = 2 is a Gamma distribution.
• A Tweedie with p = 3 is an inverse Gaussian distribution.

The mean of the Tweedie is: µ = λ α θ.  Also it turns out that: φ = λ
1-p (αθ)2-p

2 - p
.

For a Compound Poisson with Gamma severity, we have Prob[X = 0] = e-λ, and for x > 0:85 

f(x) = e-λ λn

n!n=1

∞
∑  e-x/θ xnα-1

Γ[nα] θnα  = exp[-x/θ - λ]  (λ / θα)n xnα-1

n! Γ[nα] n=1

∞
∑ .

θα = φ(2-p)/(p-1) (p-1)(2-p)/(p-1) µ2-p.  We had: λ = µ2-p

φ (2 - p)
.  Thus λ/θα does not depend on µ.

Thus the above sum does not depend on µ.  

For a given GLM using the Tweedie, φ and 1 < p < 2 are fixed. 

� 

⇒ α = 2 - p
p - 1

 is fixed.

If µ increases, then λ = µ2-p

φ (2 - p)
 and θ = φ (p-1) µp-1 each also increase.

Thus if the mean increases, then both mean frequency = λ, and mean severity = αθ increase.
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83 For the Gamma Distribution, the coefficient of variation is 1/ α .
84 If p = 1 and φ ≠ 1, then the Tweedie is an overdispersed Poisson distribution.
85 Using the fact that the sum of n independent, identically distributed Gammas is another Gamma Distribution with 
parameters nα and θ.



An Example of a Tweedie Distribution:

Exercise: Take µ = 10, p = 1.5, and φ = 4.  
Determine the parameters of the Poisson and Gamma. 

[Solution: λ = µ2-p

φ (2 - p)
 = 100.5

(4) (2 - 1.5) 
 = 1.581.   α = 2 - p

p - 1
 = (2 - 1.5) / (1.5 - 1) = 1.

θ = φ (p-1) µp-1 = (4)(1.5 - 1) 10(1.5-1) = 6.325.  
Comment: The severity piece of the Compound Poisson is an Exponential with mean 6.325.
The mean of the Compound Poisson is: (1.581) (6.325) = 10 = µ.
The variance of the Compound Poisson is: 
(mean of Poisson) (second moment of the Exponential) = (1.581) {(2)(6.3252)} = 126.5 = 
(4)(101.5) = φ µp.]

The density at zero of the Poisson is: e-1.581 = 20.58%.
Thus there is a point mass of probability of 20.58% at zero.

Using a computer, this Tweedie has density at one of 0.1072.
This Tweedie has density at ten of 0.0258.
This Tweedie has density at twenty five of 0.0024.
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Here is graph of the density of this Tweedie Distribution, 
including the point mass of probability 20.58% at zero:86 87 
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86 For example, at 0.01 the density of the Tweedie is 0.1254.
87 See Figure 5 in Generalized Linear Models for Insurance Rating.



Determination of the p parameter of the Tweedie Distribution:

In order to use the Tweedie Distribution, one needs to determine the p parameter.
There are number of different ways to do so:
• Some model-fitting software packages provide the functionality to estimate p as part of the 
! model-fitting process.88

• Several candidate values of p (1 < p < 2) can be considered and tested with the goal of 
! optimizing a statistical measure such as loglikelihood or using cross-validation.
• Simply judgmentally select some value that makes sense.89

This last may be the most practical in many situations, as the fine-tuning of p is unlikely to have 
a very material effect on the model estimates.

Here is an example of the second approach of determining the value of p for a GLM using the 
Tweedie Distribution:90 

!

For a sequence of values of the parameter p in the Tweedie model, we compute the 
loglikelihood of the fitted model. In this case, the loglikelihoods show a smooth inverse 
U-shape. One would then select the value of p that corresponds to the maximum loglikelihood, 
in this case p = 1.30.
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Standard Errors and Confidence Intervals for Fitted Parameters:

A standard error is the standard deviation of an estimated coefficient.91 Computer software 
for fitting GLMs will output the fitted coefficients and the corresponding standard errors.92 

For GLMs for large samples, the Maximum Likelihood estimator is approximately multivariate 
Normal and asymptotically unbiased. Thus in GLM output, it is common to graph the fitted 
parameters and also bands plus or minus two standard errors.93  

For example we might have fitted coefficients of:

β0
^  = 223, ^β1 = 1.95, and ^β2  = -1.07. 
With corresponding standard errors of: 30.3, 0.607, and 0.632.

An approximate 95% confidence interval for β0 is:  
223 ± (1.960)(30.3) = (164, 282).

95% confidence interval for βi is: βi^  ± 1.96 (standard error of βi).

Exercise: Determine an approximate 95% confidence interval for β1,
[Solution: 1.95 ± (1.960)(0.607) = (0.76, 3.14). ]

Exercise: Determine an approximate 95% confidence interval for β2,
[Solution: -1.07 ± (1.960)(0.632) = (-2.31, 0.17). ]

A standard error of 30.3 for β0^  can be thought of as follows: if one simulated similar sized data 
sets many times and fit GLMs, the estimated intercepts would have a variance of 30.32.
A smaller standard error gives us more confidence in the estimate of the corresponding 
coefficient. 

Larger data sets will produce smaller standard errors than otherwise smaller data sets;
the standard errors go down approximately as the square root of the sample size.
The larger the estimated dispersion parameter φ, the more randomness there is in the data, and 
thus the larger the standard error; the standard error goes up as φ .
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One can perform hypothesis tests. For example, we can test β1 = 0 versus β1 ≠ 0.
The probability value of this two-sided test is: 2 {1 - Φ[1.95/0.607]} = 2 {1 - Φ[3.21]} = 0.1%.94 

p-value = Prob[test statistic takes on a value equal to its calculated value or
! ! ! a value less in agreement with H0 (in the direction of H1 ) | H0 ].

For a p-value sufficiently small, we can reject the null hypothesis in favor of the alternative 
hypothesis that the slope is non-zero. In this case, with a p-value of 0.1% we reject the 
hypothesis that β1 = 0. 

Exercise: Test β2 = 0 versus β2 ≠ 0.
[Solution: p-value = 2 Φ[-1.07/0.632] = 2 Φ[-1.69] = 9.1%.
Therefore, we reject the null hypothesis at 10% and do not reject the null hypothesis at 5%.
Comment: Since zero was not in the 95% confidence interval for b2, 
we reject the null hypothesis at 5%.
Note that “not reject” is the correct statistical language, although actuaries sometimes say 
“accept”.]

At the 10% significance level we can reject the hypothesis that β2 = 0.  However, at the 5% 
significance level there is insufficient evidence to reject the hypothesis that β2 = 0. 

We can perform two-sided tests: β2 = 0 versus β2 ≠ 0.
We can also perform one-sided tests: β2 = 0 versus β2 > 0, or β2 = 0 versus β2 < 0.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 261
  

94 A table of the Normal Distribution will not be attached to your exam.



Using a p-value of 5%:

“A common statistical rule of thumb is to reject the null hypothesis where the p-value is 0.05 or 
lower. However, while this value may seem small, note that it allows for a 1-in-20 chance of a 
variable being accepted as significant when it is not. Since in a typical insurance modeling 
project we are testing many variables, this threshold may be too high to protect against the 
possibility of spurious effects making it into the model.”95 

For example, if we are testing the potential usefulness of 60 possible predictor variables, then if 
we use a p-value of 5%, even if none of the variables actually predict the outcome, on average 
three of these 60 variables will be selected as significant.

I performed a simulation experiment. I simulated 500 random observations from each of 60 
independent normally distributed predictor variables. Then I simulated 500 observations from a 
normally distributed response variable.96  

However, the response variable was independent of the predictor variables. In other words, 
none of the 60 predictor variables was actually useful for predicting the response variable.
Then I fit a multiple regression to this data.97  

The p-values of the 60 fitted slopes, were from smallest to largest: 
0.005, 0.009, 0.020, 0.095, 0.109, 0.121, 0.148, 0.159, 0.177, 0.181, 0.196, 0.206, 0.253, 0.275, 
0.331, 0.333, 0.387, 0.421, 0.423, 0.455, 0.494, 0.495, 0.495, 0.513, 0.521, 0.522, 0.545, 0.549, 
0.562, 0.591, 0.593, 0.610, 0.614, 0.618, 0.629, 0.637, 0.645, 0.649, 0.653, 0.676, 0.684, 0.707, 
0.707, 0.758, 0.778, 0.778, 0.790, 0.806, 0.825, 0.861, 0.886, 0.894, 0.894, 0.916, 0.941, 0.952, 
0.980, 0.982, 0.987, 0.993.

We note that even though none of the 60 potential predictor variables is useful, three of the 
slopes are significant at the 5% level.98  This illustrates the difficulty of relying on p-values when 
one starts with a large number of potential predictor variables. In such situations, it is very 
important to test any selected model on a separate holdout data set, as has been discussed.99 
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coincidence. 
99 One can instead use k-fold validation, as discussed previously. 



Log Link Function and Continuous Variables:100 

As will be discussed, taking the log of continuous variables provides more variety of behaviors. 

� 

⇒ One is more likely to find a behavior that fits your data.  

Assume we are using the log link function.
For example: µ = exp[β0 + β1x1 + β2x2].

Then µ = exp[β0 + β2x2] exp[β1]

� 

x1.
Thus the multiplicative relativity for x1 is exp[β1]

� 

x1.

Assume x1 is a continuous variable such as amount of insurance.101  

For example, if β1 = 0.5, then exp[β1]

� 

x1 = 1.649AOI. 
If instead β1 = 1.1, then exp[β1]

� 

x1 = 3.004AOI. 
Both of these curves have the same form, exponential growth: cx, where c is some constant.

What if instead of using x1 as the predictor variable, we used ln[x1]?
µ = exp[β0 + β1ln[x1] + β2x2] = exp[β0 + β2x2] x1

� 

β1.
Now the multiplicative relativity for amount of insurance is AOI

� 

β1.

For example, if β1 = 0.5, then the multiplicative relativity is AOI0.5. 
If instead β1 = 1.3, then the multiplicative relativity is AOI1.3. 
These are significantly different behaviors.102 
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!
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This variety of behaviors makes it more likely to find a model that fits the data.  

� 

⇒ The authors recommend that when using the log link function in a GLM, 
you log your continuous predictor variables.103 

“Note that this suggestion is not due to any statistical law, but rather it is a rule of thumb specific 
to the context of insurance modeling, and is based on our a priori expectation as to the 
relationship between losses and the continuous predictors typically found in insurance models.” 

“For some variables, logging may not be feasible or practical. For example, variables that 
contain negative or zero values cannot be logged without a prior transformation. Also, for 
artificial continuous variables (such as credit scores) we may not have any a priori expectation 
as to whether the natural form or the logged form would better capture the loss response.”

Usually the model will be easier to interpret if for example we used ln[AOI / 200,000], rather than 
ln[AOI]. While this will be easier to interpret, it produces a mathematically equivalent model to 
using ln[AOI].
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case of a log link is the log of the mean of the outcome.”
This is an empirical question. There will be cases where not taking the log of a continuous predictor variable will 
result in a GLM that better fits the data; for example, this may be the case when the continuous predictor is year.



The syllabus reading has an example of a commercial building claims frequency model.
When ln[AOI] was used the output was:104 

!

When instead ln[AOI/200,000] was used the output was:105

!

Most of the fitted coefficients stay the same. However, both the intercept and the coefficient of 
sprinklered have changed. 

Originally the sprinklered coefficient was positive and now it is negative. In the first model, it 
appears that having sprinklers would lead to a higher claims frequency, which does not make 
intuitive sense. However, we need to also take into account the interaction term.

In the first model, for example, for AOI = 50,000, having sprinklers adds to the linear predictor:
0.7447 + (-0.1032)ln[50,000] = -0.3719.  Thus, sprinklered has a lower predicted frequency.
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In the first model, this addition to the linear predictor would be zero for:
0 = 07447 + (-0.1032) ln[AOI]. ⇒ AOI = 1361. 

In this example, almost all, if not all insured buildings have amounts of insurance larger than 
1361.  Thus in both models, for actual amounts of insurance for insured buildings, having 
sprinklers reduces the predicted frequency. 

Exercise: An insured building has is occupancy = 2, has AOI = 80,000, and is sprinklered.
For each of the two models, determine the predicted frequency.
[Solution: For the first model: 
exp[-8.9456 + 0.2919 + 0.7447 + 0.4239 ln[80,000] - 0.1032 ln[80,000] ] = exp[-4.288] = 1.37%.
For the second model: 
exp[-3.7710 + 0.2919 - 0.5153 + 0.4239 ln[80,000/200,000] - 0.1032 ln[80,000/200,000] ] 
! = exp[-4.288] = 1.37%.
Comment: The two models give the same result.
Note that: -8.9456 + 0.4239 ln[200,000] ≅ -3.7710.
0.7447 - 0.1032 ln[200,000] ≅ -0.5153.
Thus one can infer what the new intercept and sprinklered coefficient must be after centering.]

The authors recommend that when using the log link function in a GLM, 
prior to logging a continuous predictor variables you divide by the base level of that 
continuous variable; in other words, center your continuous variables at their base level. 

Centering has the following advantages:106

● If all continuous variables are divided by their base values prior to being logged and included 
! in the model, then the intercept term after exponentiating yields the indicated frequency 
! at the base case when all variables are at their base levels. This is both more intuitive 
! and easier to interpret.
● When terms are not centered, you can have unintuitive results. In the given example, the 
! sprinkler coefficient is positive which can appear to indicate a higher frequency for 
! sprinklered buildings than for non-sprinklered buildings. (However, when taking into 
! account the interaction term, this is not true for values of log(AOI) for insured buildings.) 
! This would not happen if AOI had been centered at its base level; the coefficients are 
! more intuitive to understand when variables are centered.
● In this example, with the AOI predictor in this form, the sprinklered coefficient has a more 
! natural interpretation: it is the (log) sprinklered relativity for a risk with the base AOI.
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Logistic Regression:107

A variable can be categorical; there are a discrete number of categories, but the labels attached 
to them may have no significance. Variables can be binary; this is a special case of categorical 
variable with only two categories, which can be thought of as either 0 or 1. Examples include: 
whether a policyholder renews its policy, whether a newly opened claim will exceed $10,000, 
whether a newly opened claim will lead to a subrogation opportunity, whether a newly opened 
claim is fraudulent, etc.  

When the response variable is binary we use the Bernoulli Distribution, the Binomial with m = 1. 
In that case, the probability of the event is µ and the probability of not having the event is 1-µ.
The ratio μ/(1-μ) is called the odds. 

Exercise: If the probability of an event is 80%, what are the odds?
[Solution: 80% / (1 - 80%) = 4.
Comment: The event is 4 times as likely to occur as not occur.]

The most common link function to use in this case is the logit, the log of the odds:108 
g(m) = ln[µ/(1-µ)]. 

� 

⇔ µ = exp[x’b] / {1 + exp[x’b]}.

One can group similar observations in which case one has a Binomial with parameters mi and 
qi, where mi is the number of observations in the given group.

A GLM with the Bernoulli or Binomial Distribution using the logit link function is called 
a Logistic Regression.

Example of Logistic Regression:109 

Fit a logistic regressions to data on whether or not a vehicle had a claim.
If x is the vehicle value in units of $10,000, the model is:
ln[µ/(1-µ)] = β0 + β1x + β2x2, with β0^  = -2.893, β1^  = 0.220, β2^  = -0.026.

For a vehicle worth $30,000, xβ = -2.893 + (0.220)(3) + (-0.026)(32) = -2.467.
Thus the expected probability of a claim for a vehicle worth $30,000 is:
e-2.467 / (1 + e-2.467) = 7.8%.

Exercise: Determine the expected probability of a claim for a vehicle worth $70,000.
[Solution: xβ = -2.893 + (0.220)(7) + (-0.026)(72) = -2.627.  e-2.627 / (1 + e-2.627) = 6.7%.]
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One can also fit a model, using instead a categorical version of vehicle value such as 6 groups:
less than 25,000, 25K to 50K, 50K to 75K, 75K to 100K, 100K to 125K, more than 125,000.
With the first group as the base level, the fitted model had: 
β0
^  = -2.648, β1^  = 0.174, β2^  = 0.102, β3^  = -0.571, β4^  = -0.397, β5

^  = -0.818.

Thus a vehicle of value less than $25,000 has an expected probability of a claim of:
exp[-2.648] / (1 + exp[-2.648]) = 6.61%.

A vehicle of value $25,000 to $50,000 has an expected probability of a claim of:
exp[-2.648 + 0.174] / (1 + exp[-2.648 + 0.174]) = 7.77%.

A vehicle of value greater than $125,000 has an expected probability of a claim of:
exp[-2.648 - 0.818] / (1 + exp[-2.648 - 0.818]) = 3.03%.

The odds for a vehicle of value less than $25,000, the base level is: 
6.61%/(1 - 6.61%) = 0.0708 = exp[-2.648] = exp[β0].

The odds for a vehicle of value 25,000 to $50,000 is: 
7.77%/(1 - 7.77%) = 0.0842 = exp[-2.648]exp[0.174] = exp[β0]exp[β1].

Thus the odds for the second level are those for the first base level times exp[β1]. The odds for 
the second level are higher than those for the base level by a factor of exp[0.174] = 1.190.  The 
odds for the last level are lower than those for the base level by a factor of exp[-0.818] = 0.441.

Grouping Data:

When one has binary variables, one can group the data into the possible combinations.
For example, with vehicle insurance data using driver’s age (6 groups), area (6 territories), 
vehicle body (13 types), and vehicle value (6 groups), there are (6)(6)(13)(6) = 2808 cells.
Only some of these cells contain data. 

For example, assume that driver age group 1, Area A, Hatchback, of value less than $25,000 in 
value has 554 polices with 47 claims. 
We would take this as a random draw from a Binomial with m = 554.
In general, for a cell with ni policies, we would assume the number of claims follows B(ni, qi).

We get the same fitted parameters and standard errors using either individual or grouped data, 
although the test statistics will differ. 
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Correlation Among Predictors:110

When the correlation between two predictor variables is large (in absolute value), 
the GLM will be unstable. The standard errors of the corresponding coefficients can be large 
and small changes in the data can produce large changes in the coefficients.

For example, years of education of the father and mother are likely to be highly positively 
correlated.
Including both in a model may produce problems.111 

Software may not catch the presence of highly correlated variables and try to fit the model 
anyway. Due to the extreme correlation, the model will be highly unstable; the fitting procedure 
may fail to converge, and even if the model run is successful the estimated coefficients will be 
nonsensical. 

When you start with a very long list of possible predictors to use in a GLM, it is common for 
some pairs of predictors to be highly correlated. Thus one should check the correlations of pairs 
of proposed predictor variables with each other. 

If potential problems are found, one can:
1. Remove one or more predictors from the model.112 
2. Use techniques that combine predictors in order to reduce the dimension, such as
! Principal Component Analysis and Factor Analysis.113 

“Determining accurate estimates of relativities in the presence of correlated rating variables is a 
primary strength of GLMs versus univariate analyses; unlike univariate methods, the GLM will 
be able to sort out each variable’s unique effect on the outcome, as distinct from the effect of 
any other variable that may correlate with it, thereby ensuring that no information is double-
counted.”
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I discuss Principal Component Analysis in my section on the paper by Robertson.
When a set of variables are highly correlated, either positively or negatively, the first principal component or the first 
two principal components capture most of the variation in the original variables. 
The first principal component is a linear combination of the original variables.



Multicollinearity: 

Multicollinearity is a similar situation which also leads to potential problems. 
Multicollinearity occurs when two or more predictors in a model are strongly predictive of 
another one of the predicator variables.114 

As discussed, we are concerned when pairs of variables are highly correlated. However, even in 
situations where pairs of variables are not highly correlated, problems can occur when looking at 
three or more predictor variables in combination.

For example, an insurer uses among others the following policyholder characteristics: age, 
years of education, and income. The first two characteristics would help to predict the final 
characteristic. Depending on how close this relationship was for this insurer’s data, this could 
create a problem with the output of a GLM due to multicollinearity.

A high degree of multicollinearity, usually leads to unreliable estimates of the  
parameters. The estimation equations are ill-conditioned.

A useful statistic for detecting multicollinearity is the variance inflation factor (VIF).
If one or more of the VIFs is large, that is an indication of multicollinearity.
A common statistical rule of thumb is that a VIF greater than 10 is considered high, 
indicating possible problems from multicollinearity.

You will not be asked to compute VIF.115 116  Most software packages give VIF as an output. 

Aliasing:

Where two predictors are perfectly correlated, they are said to be aliased, and the GLM 
will not have a unique solution. Equivalently, aliasing can be defined as a linear dependency 
among the columns of the design matrix X. 

Intrinsic aliasing is a linear dependency between covariates due to the definition.

For example, if you have only three territories, then knowing an insured is not in territory one or 
territory two, implies they are in territory three. Such intrinsic aliasing is common with categorical 
variables; every insured must be in one and only one of the categories.
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115 “The VIF for any predictor is a measure of how much the (squared) standard error for the predictor is increased 
due to the presence of collinearity with other predictors. It is determined by running a linear model for each of the 
predictors using all the other predictors as inputs, and measuring the predictive power of those models.”
116 In the case of regression, regress the ith independent variable against all of the other independent variables,
and let Ri2 be the coefficient of determination of this regression.

Then the Variance Inflation Factor is: VIFi = 1/(1 - Ri2).



Initially we have three covariates for the three territories and corresponding coefficients:
β1, β2, and β3.  Ignoring any other factors, the linear predictor is: η = X1 β1 + X2 β2 + X3 β3.
However, X1 + X2 + X3 = 1, so we can eliminate any one of three variables from the model. 
For example, η = X1 β1 + X2 β2 + (1 - X1 - X2) β3 = X1 (β1 - β3) + X2 (β2 - β3) + β3.
Thus one can eliminate X3 from the model, and include an intercept term if it does not already 
exist.

The fitted values will be the same regardless of which level is eliminated. 
Selecting as the base level for each factor the one with the most exposure is helpful, since this 
minimizes the standard errors associated with other parameter estimates.

Exercise: Age of driver has only three levels: Youth, Adult, and Senior.
Demonstrate how aliasing can be used to exclude a level from the age variable. 
[Solution: We have that 1 = Xyouth + Xadult + Xsenior, and thus Xadult = 1 - Xyouth - Xsenior. 
Therefore, we can eliminate βadult from the model and include an intercept term if it does not 
already exist.
Comment: One could have eliminated any of the levels. 
The adult level, which has the most exposures, would be a good choice for a base level.
The intercept term would now corresponds to the adult base level; there is no separate 
parameter for adult.
We would still have a parameter for Youth and a parameter for Senior.]

In general, when we have a categorical variable with N levels, the model should have N-1 
parameters in addition to an intercept term. The chosen base level, which is often the one 
with the most exposures, is associated with the intercept term and will not have a separate 
associated parameter. 

As another example of intrinsic aliasing, age of vehicle would alias with model year, since if you 
know one you can determine the other.

Extrinsic aliasing is a linear dependency between covariates that arises due to the particular 
values in the observed data rather than inherent properties of the covariates themselves.117  

For example, if all sports cars in a data base just happen to be red cars and vice-versa.

Most software will detect aliasing and automatically drop one of those predictors from the model. 
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Limitations of GLMs:118

1. GLMs assign full credibility to the data.119 
2. GLMs assume that the randomness of outcomes are uncorrelated.120 

As has been discussed on the exam on Basic Ratemaking, when estimating classification 
relativities by older techniques, an actuary uses credibility. The estimated relativities of classes 
with less data are given less than full weight.  

However, using GLMs the estimated relativities are given full weight.

In fact, for a GLM with just one categorical predictor variable, the estimates will just be the 
observed average for each level. An actuary would not use the observed average for a small 
class (or the ratio of its observed average to the observed average for the base level) as a 
reasonable estimate of the future.

It should be noted, that for a class with little data, the standard errors of the fitted coefficient will 
be large. Thus we may not reject a value of zero for the coefficient of that small class. In a 
multiplicative model this would imply a relativity of one. Alternately, we could combine the small 
class with another class. However, neither of these alternatives is as flexible as giving the 
observed relativity for this small class some positive weight less than one.

In a regression, we assume that the random components, in other words the errors, εi, are 
uncorrelated.121  Similarly, in a GLM we assume that the random components are 
uncorrelated.122 123 
This assumption can be violated. 

For example, the data set may include several years of data from a single policyholder, which 
appear as separate records. The outcomes of a single policyholder are correlated. 
Another example, in the case of wind losses, the outcomes for policyholders in the same area 
will be correlated.124 

If there are large correlations of random components, then the GLM would pick up too much 
random noise, and produce sub-optimal predictions and overoptimistic measures of statistical 
significance.
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120 Goldburd, Khare, and Tevet, mention two methods that account for correlation in the data:
generalized linear mixed model, and generalized estimating equations.
121 This assumption is often violated when dealing with time series.
122 We assume that the systematic components are correlated.
 For example, drivers in the same class and territory are assumed to have similar expected pure premiums.
123 The random component is the portion of the outcomes driven by causes not in our model.
124 I am thinking about wind losses from other than catastrophes; catastrophes would not be modeled using GLMs.



The Model-Building Process:125 

The authors discuss how actuaries build models; much of the material is not specific to GLMs.
They give a list of steps or components:126 
● Setting of objectives and goals
● Communicating with key stakeholders
● Collecting and processing the necessary data for the analysis
● Conducting exploratory data analysis
● Specifying the form of the predictive model
● Evaluating the model output
● Validating the model
● Translating the model results into a product
● Maintaining the model
● Rebuilding the model

Setting Goals and Objectives:

● Determine the goals. 
● Determine appropriate data to collect.
● Determine the time frame.
● What are key risks and how can they be mitigated?
● Who will work on the project; do they have the necessary knowledge and expertise? 

Communication with Key Stakeholders:

● Legal and regulatory compliance
● Information Technology (IT) Department
● Underwriters
● Agents

Collecting and Processing Data:127 

● Time-consuming. 
● Data is messy.
● Often an iterative process.
● The data should also be split into at least two subsets, so that the model can be 
! tested on data that was not used to build it. 
● Formulate a strategy for validating the model.

Any analysis performed by an actuary is no better than the quality of the data that goes
into that analysis!128 
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125 See Section 3 of Generalized Linear Models for Insurance Rating.
126 As always, such lists are somewhat arbitrary. Many actuaries do not require such lists to do their jobs.
Another possible step is to read the literature to see what has been done in similar situations in the past. 
127 For more detail, see Section 4 of Generalized Linear Models for Insurance Rating.
128 Garbage in, garbage out.



Conducting Exploratory Data Analysis (EDA):

Spend some time to better understand the nature of the data and the relationships between the 
target and explanatory variables. Helpful EDA plots include:
● Plotting each response variable versus the target variable to see what (if any) relationship 
! exists. For continuous variables, such plots may help inform decisions on variable 
! transformations.
● Plotting continuous response variables versus each other, to see the correlation between 
! them.129 

Specifying Model Form:130 

● What type of predictive model works best?
● What is the target variable, and which response variables should be included?
● Should transformations be applied to the target variable or to any of the response variables?
● Which link function should be used?

Evaluating Model Output:131

● Assessing the overall fit of the model.
● Identifying areas in which the model fit can be improved.
● Analyzing the significance of each predictor variable, 
! and removing or transforming variables accordingly.
● Comparing the lift of a newly constructed model over the existing model or rating structure.

Model Validation:132 

● Assessing fit with plots of actual vs. predicted on holdout data.
● Measuring lift.
● For Logistic Regression, use Receiver Operating Characteristic (ROC) Curves.

Translating the Model into a Product: 

For GLMs, often the desired result is a rating plan. 

● The product should be clear and understandable. 
● Are there other rating factors included in the rating plan that were not part of the GLM?
! Then it is important to understand the potential relationship between these additional 
! variable(s) and other variables that were included in the model. 
! Judgmental adjustments may be needed.
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129 Recall that a high correlation, either positive or negative, between pairs of predictor variables may lead to 
problems with the fitted GLM.
130 For more detail, see Section 5 of Generalized Linear Models for Insurance Rating.
131 For more detail, see Section 6 and 7 of Generalized Linear Models for Insurance Rating.
132 For more detail, see Section 7 of Generalized Linear Models for Insurance Rating.



Maintaining and Rebuilding the Model:

Models should be periodically rebuilt in order to maximize their predictive accuracy,
but in the interim it may be beneficial to merely refresh the existing model using newer 
data. In other words, more frequently one would update the classification relativities without 
updating the rating algorithm or classification definitions. Less frequently, one would do a more 
complete update, investigating changing the classification definitions, the predictor variables 
used, and/or the rating algorithm.

In a somewhat different context, perhaps every 2 years one would update ELPPFs using the 
latest data but the existing grouping of classifications into hazard groups. Perhaps every 10 or 
15 years one would update the grouping of classifications into hazard groups.133 

Data Preparation and Considerations:134 

Much of this is not unique to GLMs.
Data preparation is time consuming.135 
Correcting one data error might help you discover another.

● Combining Policy and Claim Data.
● Modifying the Data.
● Splitting the Data.

Ratemaking Data:

Data is used by actuaries for many purposes including ratemaking.
For classification and territory ratemaking, more detailed data on exposures, premiums, losses, 
and ALAE is used, broken down by class and territory.
Ratemaking data is usually aggregated into calendar years, accidents years, and/or policy 
years. 
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133 See the syllabus reading by Robertson.
134 See Section 4 of Generalized Linear Models for Insurance Rating.
135 At a large insurer, much of this work would have been routinely done by someone other than the actuary working 
on a specific GLM project. The actuary is responsible for determining whether it is reasonable to rely on the data 
supplied by others. See for example, Actuarial Standard of Practice 23 on Data Quality, not on the syllabus.



Combining Policy and Claim Data:

An insurer’s data is often contained in a policy data base with exposures and premiums, and a 
separate claims data base with losses and alae.136  These data bases have to be combined in a 
manner useful to the actuary.

Issues discussed by the authors:
● Are there timing considerations with respect to the way these databases are updated that 
! might render some of the data unusable?
● Is there a unique key that can be used to match the two databases to each other in such a 
! way that each claim record has exactly one matching policy record?
● What level of detail should the data sets be aggregated to before merging?
● Are there fields that can be safely discarded?
● Are there fields that should be in the database but aren’t?137 

Finding and Correcting Errors in the Data:138 

Any dataset of sufficient size is likely to have errors. 

● Check for duplicate records. 
● Check categorical fields against available documentation. 
● Check numerical fields for unreasonable values.139  
● Decide how to handle each error or missing value that is discovered. 
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136 See for example Chapter 3 of “Basic Ratemaking” by Werner and Modlin, on the syllabus of Exam 5.
137 In which case, the actuary may initiate the process to start collecting this additional information. There are many 
pieces of information currently collected by insurers and rating bureaus that were not collected 50 years ago.
138 When I worked at a rating bureau, a good percentage of my time was spent on this. We developed many 
systematic ways to detect errors. More than one group of people would be looking at the data from somewhat 
different points of view. Large errors were easy to find, but smaller errors required more diligence to find. 
Unfortunately, one can never find all of the errors.
139 For example, an insurer reported to the rating bureau that an employer had as much payroll as the entire state.
This error was quickly spotted and when pointed out to the insurer was quickly corrected.



Splitting the Data into Subsets:140 

For modeling purposes one should split the data into either two or three parts. 
This can be done either at random or based on time, for example policy year.

The simpler approach is to split the data into a training set and test (holdout) set.141 
For example, the training set could be 2/3 of the data while the test set is the remaining 1/3. 

One develops the model on the training set. Then once one has come up with a final model 
or a few candidates for a final model, one would test performance on the test set of data, 
which was not used in developing the model.142  

The model was developed to fit well to the training set. In doing so, we are concerned that the 
model may be picking up peculiarities of the training set. If the model does a good job of 
predicting for the test set, which was not used in developing the model, then it is likely to also 
work well at predicting the future.143

Reasons to split the data into a training set and a test set: 
● Attempting to test the performance of any model on the same set of data on which the model 
was built will produce overoptimistic results. The model-fitting process optimizes the parameters 
to best fit the data used to train it. Using the training data to compare our model to a model built 
on different data would give our model an unfair advantage.
● As we increase the complexity of the model, the fit to the training data will always get better.
Thus the performance on the training data can not be used to compare models of different 
complexity. On the other hand, for data the model fitting process has not seen, eventually 
increased complexity will worsen the performance of the model.144 Thus the performance on the 
test data can be used to compare models of different complexity.

The split of data can be performed either by randomly allocating records between the training 
and test sets, or by splitting on the basis of a time variable.145  The latter approach has the 
advantage in that the model validation is performed “out of time” as well as out of sample, giving 
us a more accurate view into how the model will perform on unseen years.
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140 See Section 4.3 of Generalized Linear Models for Insurance Rating. 
141 This is done in the syllabus reading by Couret and Venter.
142 Such testing will be discussed subsequently.
143 We are interested in how the GLM will perform at predicting the response variable on some future set of data 
rather than on the set of past data with which we are currently working.
144 See Figure 7 in Generalized Linear Models for Insurance Rating.
145 One could split by month or by calendar/accident year.
As in Couret and Venter one could select either the even or odd years of data as the training set and the other as 
the test set, in order to be neutral with respect to trend and maturity.



“Out-of-time validation is especially important when modeling perils driven by common events 
that affect multiple policyholders at once. An example of this is the wind peril, for which a single 
storm will cause many incurred losses in the same area. If random sampling is used for the split, 
losses related to the same event will be present in both sets of data, and so the test set will not 
be true unseen data, since the model has already seen those events in the training set. This will 
result in overoptimistic validation results. Choosing a test set that covers different time periods 
than the training set will minimize such overlap and allow for better measures of how the model 
will perform on the completely unknown future.”146 

The actuary should wait as long as possible in the process to use the test set. Once you start 
comparing to the test set, if you go back and change the form of the model, the usefulness of 
the test set for further comparisons has been diminished.

Thus sometimes, one uses the more complicated approach of splitting the data in three subsets:
a training set, validation set, and test (holdout) set.147   
For example, the split might be 40%, 30%, 30%.

As before, one develops the model on the training set. Then once one has come up with a good 
model or several good models, one would test performance on the validation set of data, which 
was not used in developing the model(s). If any changes in the form of the model are indicated, 
one goes back and works again with the training set. This iteration continues until the actuary is 
satisfied.

Then one would test performance on the test set of data, which was not used so far. 

In either the simpler or more complicated case, once a final form of the model has been 
decided upon, one should go back and use all of the available data to fit the parameters 
of the GLM.
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146 Quoting from Section 4.3.1 of Generalized Linear Models for Insurance Rating.
See 8 11/17, Q.4c.
147 Hopefully the total amount of data available is big enough to allow this.



Underfitting and Overfitting:

A model may be either overfit or underfit. Think of fitting a polynomial to 20 points. A straight line 
with no intercept, in other words a model with one parameter, will probably not do a good job of 
fitting the points. A fitted 19th degree polynomial, in other words a model with 20 parameters, will 
pass through all of the points. 

However, actuaries are using a model to predict the behavior in the future. The one parameter 
model will probably not do a very good job, since it ignored some of the information in the data.
It is underfit. The 20 parameter model will not do a good job of predicting, since it picked up all 
of the random fluctuation (noise) in the data. It is overfit.

A model should be made as simple as possible, but not simpler.

Underfit. ⇔ Too few Parameters. ⇔ Does not use enough of the useful information.
!       ⇔ Does not capture enough of the signal.

Overfit. ⇔ Too many Parameters. ⇔ Reflects too much of the noise.

We wish to avoid both underfitting and overfitting a model.

Think of fitting loss distributions.  We would not use the most complicated model possible.148  
We would only add parameters to the extent they were statistically significant.149 
In a particular situation, it might be that an Exponential Distribution (one parameter) is an 
underfit model, a Transformed Gamma Distribution (3 parameters) is an overfit model, while a 
Gamma Distribution (2 parameters) is just right.
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148 Recall that a mixture of two or more distributions can have a lot of parameters.
149 Think of the Likelihood Ratio Test, AIC, or BIC (the Schwarz Bayesian Criterion).



In order to produce a sensible model that explains recent historical experience and is likely to be 
predictive of future experience, one needs to avoid both too little and too much complexity:150 

Each added parameter adds a degree of freedom to the model. This can be due to the addition 
of a new predictor variable, the addition of a polynomial term, the addition of an interaction term, 
etc. Each added degree of freedom makes the model more complex. 
Our goal in modeling is to find the right balance where we pick up as much of the signal 
as possible with minimal noise. This is illustrated in Figure 7 of the syllabus reading:

!

As we add more parameters, we get a model that fits the training set better. However, when we 
compare such a model fitted to the training data to the test data, there is a point past which 
added parameters reduce the fit to the test data. The right balance is indicated by the vertical 
dotted line, at about 70 degrees of freedom in this case.151 
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150 Taken from “GLM II, Basic Modeling Strategy”, presented by Lenard Shuichi Llaguno, FCAS,
at the 2012 CAS Ratemaking and Product Management Seminar.
151 Here the authors use degrees of freedom to refer to the number of parameters in the fitted model. 
In for example the F-test, many authors instead define the degrees of freedom as number of observations minus 
number of fitted parameters for the fitted model.



Cross Validation:152 153

Cross Validation is another technique for data splitting, although it is often of limited usefulness 
for actuarial work.

Split the data into for example 10 groups. Each group is called a fold. For each fold:
• Train the model using the other folds.154 
• Test the model using the given fold.

Cross validation has the advantage of using all of the data (at some point) to estimate the mean 
squared error, rather than only using the portion of the data in the holdout set to do so. Thus 
cross validation should produce a better estimate of the MSE.

In the case of 10-fold cross validation, fit model form A on the data for the first 9 folds. Then 
compute the mean squared error (MSE) of this fitted model used to make predictions to the data 
in the remaining tenth fold. 

Now fit the same model form A on the data for the folds other than the ninth. Then compute the 
mean squared error (MSE) of this fitted model used to make predictions to the data in the 
remaining ninth fold. 

We would continue in this manner and then average these ten mean squared errors. This would 
be the estimated test MSE for model form A.  

We could then determine the MSE of several other model forms, B, C, etc., in a similar 
manner.155 The form of model with the lowest test MSE would be best.

For example, we might compare polynomial models with different number of powers of a 
predictor variable.  
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152 See Section 4.3.4 of Generalized Linear Models for Insurance Rating. 
153 See also, An Introduction to Statistical Learning with Applications in R, by James, Witten,  Hastie, and Tibshirani,
 not on the syllabus of this exam. They also discuss how to apply cross validation to other modeling techniques 
such as ridge regression and the lasso.
154 According to the authors, this training procedure has to include all of the steps of the model building, including 
the variable selection and transformation; these steps usually include significant amounts of actuarial judgement.
155 For example, Model A and Model B might use different sets of predictor variables.



One has fit similar GLMs on a set of data, where one of the predictors enters using polynomials 
of different degrees. The test MSEs were estimated using ten-fold cross-validation:

! 1 2 3 4 5
degree

190

200

210

220

230

240
mean squared error

The model using the third degree model seems to perform best.156 

Limitations of Cross-Validation for Actuarial Work:

Cross-validation can be useful for deciding how many polynomial terms to include.157  
However, cross validation is often of limited usefulness for most insurance modeling 
applications.

The actuary usually applies a great deal of care and judgment in selecting the variables to be 
included in the model. If using cross validation, this actuarial judgement should be applied 
separately to each of the data sets created by leaving out one fold. This is not really practical. 
Thus, using cross validation in place of a holdout set is only really appropriate where a purely 
automated variable selection process is used.158 

For most actuarial modeling, the use of a holdout set is preferred to the use of cross 
validation. The final model valuation should always be done using a distinct set of data 
held out until the end. 
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156 Due to the data being assigned to the 10 folds at random, if one performed cross validation again, one would get 
somewhat different estimates of the test MSEs. Therefore, in practical applications one would perform cross 
validation several times and compare the results.
157 This is an example of evaluating a “tuning parameter” of the model.
158 This is the opinion of the authors of the syllabus reading, who have plenty of experience using GLMs for 
actuarial modeling. 



An Example of k-Fold Cross-Validation:159 

Eight observations of three independent variables and one dependent variable:
X1 X2 X3 Y

-2 1 -4 6

1 -1 0 8

3 4 4 33

6 -4 8 14

11 0 12 40

15 8 16 118

17 -8 20 2

20 -6 24 61

I will perform 4-fold cross-validation, so that each fold contains 8/4 = 2 observations.
We need to divide the original data into 4 random subsets; the estimated test MSE will depend 
to some extent on this random subdivision. My four folds will be: (1, 7), (2, 4), (3, 5), (6, 8). 

If we leave out the first and seventh observations, and fit a regression model to the remaining 
six observations, the fitted parameters are:
β0
^  = 3.78881, β1^  = 5.10444, β2^  = 5.17811, β3^  = -0.621247.
We now plug into this fitted model the values of the predictors for the first observation:
(5.10444)(-2) + (5.17811)(1) + (-0.621247)(-4) = 1.24303.
We now plug into this fitted model the values of the predictors for the seventh observation:

� 

Ŷ = 3.78881 + (5.10444)(17) + (5.17811)(-8) + (-0.621247)(20) = 36.7145.
The mean squared difference between the observed values and these predicted values is:
MSE1 = {(6 - 1.24303)2 + (36.7145 - 2)2} / 2 = 613.863.

Similarly, we would now instead leave out the 2nd and 4th observations.
We continue in this manner, and the four mean squared errors are: 
613.863, 231.863, 697.906, 1458.9.
The average of these four values is the 4-fold cross-validation estimate of the test MSE: 
750.633.

I used R to perform this same process five separate times and the estimated test MSEs were:160 
449.2197, 1249.365, 616.1268, 680.8828, 754.928.
With only 8 observations, we see considerable variation in these estimates.
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159 Solely in order to give a simple concrete example; you are not responsible for any details.
160 Using the R function cv.glm.  Each time a different set of random folds is used.



Selection of Model Form:161  

“Selecting the form of a predictive model is an iterative process, and is often more of an art than 
a science.”  

Important decisions on the form of a GLM include:
● Choosing the target variable.
● Choosing a distribution for the target variable.
● Choosing the predictor variables.
● Whether to apply transformations to the predictor variables.
● Grouping categorical variables.
● Whether to include interactions.
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161 See Section 5 of Generalized Linear Models for Insurance Rating. 



Frequency/Severity versus Pure Premium:162

An actuary could build two separate models: one for frequency and one for severity.163  
Alternately the actuary could build a single model for pure premium. If there is time, an actuary 
could do both of these different approaches and compare the results.

Advantages of the frequency/severity approach over pure premium modeling:
● Provides the actuary with more insight.
● Each of frequency and severity is more stable than pure premium.164  

Disadvantages of pure premium modeling versus the frequency/severity approach:
● Some interesting effects may go unnoticed.
● Pure premium modeling can lead to underfitting or overfitting. 
● The Tweedie distribution used to model pure premium contains the implicit assumption that 
! an increase in pure premiums is made up of an increase in both frequency and 
! severity.165

For example, urban driving tends to lead to a higher frequency of accidents (per mile driven) 
than rural driving. However, urban driving tends to lead to a lower severity of accidents than 
rural driving. 
These two separate effects could be masked in a pure premium model. In any case, with just a 
pure premium model, the actuary would not get this interesting and perhaps important insight.

While territory would show up as significant in a frequency model, when testing it in a pure 
premium model the high variance in severity may overwhelm this effect, rendering the territory 
statistically insignificant.166  Thus, a useful predictive variable will be excluded from the model, 
leading to underfitting.

Assume that a predictor variable has a significant effect on frequency and no effect on severity. 
If that variable is included in a pure premium model, then the fitted GLM will pick up any effect of 
severity in the training data even if it is just noise. The corresponding parameter will be overfit. 

For frequency and severity, a priori expected patterns help the actuary to produce a better 
model. To the extent that the historical pattern is erratic, the actuary will be able to use 
appropriate techniques and knowledge about insurance to build a model that captures the signal 
in the data.
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162 See Section 5.1.1 of Generalized Linear Models for Insurance Rating. 
163 If the log link function is used for both, then the pure premium (multiplicative) relativities will be the product of the 
separate frequency and severity relativities.
164 Recall that the standard for full credibility for pure premium is the sum of those for frequency and severity.
165 The authors assume that one would use the Tweedie Distribution to model pure premiums.
166 While this could happen in general, in the example I have chosen it is unlikely to do so.



For example, when modeling auto collision frequency, the actuary may expect the frequency by 
age to decrease from youthful to adult and increase again for the most mature drivers.167  The 
following figure compares the historical frequencies (triangles) and modeled frequencies 
(squares) by age.168 

4

The modeled frequencies follow the general pattern expected. 
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167 These are frequencies per car year. Most senior citizens have higher expected frequencies per mile driven. 
However, their average number of miles driven per year is lower.
168 Figure 5, from “GLM Basic Modeling: Avoiding Common Pitfalls,” by Geoff Werner and Serhat Guven, 
CAS Forum Winter 2007, not on the syllabus.



Modeling Loss Ratios:

If the goal of the project is to identify deficiencies in the existing rating plan, loss ratio may be an 
appropriate target variable for the GLM.169  However, there are disadvantages to modeling loss 
ratios rather than pure premiums or frequency/severity.

Theoretical and practical disadvantages to loss ratio modeling:170  
● One needs to put premiums on-level at a granular level; difficult and time consuming.
! One has to put on the current rate level individual policies; 
! overall on-level factors will not do.
● There is no generally accepted error distribution.171 
● Difficult to distinguish noise from pattern, compared to modeling frequency/severity.
● If changes are made to the rates, then models cannot be reused from the last review.
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169 See Section 5.1 of Generalized Linear Models for Insurance Rating.
170 Taken from “GLM II: Basic Modeling Strategy, ” by Claudine Modlin,  
CAS Predictive Modeling Seminar, October 2008.
171 However, as discussed previously, one could use the Tweedie Distribution.



Policies with Multiple Coverages and Perils:172

A Businessowners package policy includes building, business personal property, and liability 
coverage.173  Each of those coverages should be modeled separately. 

In addition, one may models each peril individually.174  For the Businessowners building model, 
one may wish to create separate models for: fire and lightning, wind and hail, and all other 
perils.175 

One way to combine separate models by peril in order to get a model for all perils:
1. Use the separate models by peril to generate predictions of expected loss due to each peril 
! for some set of exposure data.176 
2. Add the peril predictions together to form a combined loss cost for each record.
3. Run a model on that data, using the combined loss cost calculated in Step 2 as the target, 
! and the union of all the individual model predictors as the predictor variables.

Transforming the Target Variable:177

Sometimes it is useful to transform the target variable. Among the possible transformations:
● Cap large losses for purposes of modeling pure premium or severity.178 
● Remove catastrophe losses.
● Losses may need to be developed.179  
● Losses and/or exposures may need to be trended.
● Premium may need to be put on level.180

Year could be included in the model, which should pick up any effects on the target variable 
related to time, such as trend, loss development, and rate changes.
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172 See Section 5.1.2 of Generalized Linear Models for Insurance Rating. 
173 Similar ideas would apply to Homeowners Insurance.
174 Or group of perils.
175 Wind and hail should be divided between catastrophe and non-catastrophes; with catastrophes modeled 
separately as discussed in the syllabus reading by Grossi and Kunreuther.
176 The data used for this procedure should reflect the expected mix going forward, and so using only the most 
recent year of exposures may be ideal. Since the target data fed into this new model is extremely stable, this 
procedure doesn’t require a whole lot of data.
177 See Section 5.1.3 of Generalized Linear Models for Insurance Rating, 
which discusses familiar things done in ratemaking.
178 Ideally the level chosen for the cap should capture most of the signal and eliminate most of the noise. 
This is similar in concept to choosing a reasonable accident limit to use in an Experience Rating Plan.
179 Either to ultimate or to a common level of maturity.
For a severity model, the development factor should reflect only expected future development on known claims. 
Since larger claims take on average longer to report, this may not address the whole issue.
For some lines of insurance, one may be better off not using more recent but less mature data in the model.
For a pure premium or loss ratio model, the development factor should include the effect of pure IBNR claims as 
well.
180 Premium would be used in a loss ratio model.



Choosing the Distribution for the Target Variable:181 182 

If modeling claim frequency, the distribution is likely to be either Poisson or Negative 
Binomial.183 

If modeling a binary response, then the Bernoulli or Binomial Distributions are used. 

If modeling claim severity, common choices for the distribution are Gamma and Inverse 
Gaussian.

If modeling pure premiums, the Tweedie Distribution is a common choice.

Selection of Predictor Variables:184

Sometimes the actuary is just updating the parameters a model using newer data. Other times, 
the actuary will do a full review of all aspects of a model, including which predictor variables to 
include.

One would like a predictor variable to have a statistical significant effect on the target 
variable. Statistical tests can be performed. One would like a small probability value for the null 
hypothesis that the corresponding parameter is zero. 

There is no magic cutoff, although a p-value of 5% or less is often used.185  However, if the 
p-value is 5%, that means that there is 1/20 chance we are including a predictor variable in the 
model when we should not. If there is large set of possible predictor variables that are tested for 
inclusion in the model, this can lead to problems.186 

In addition to statistical significance, the actuary must take into account practical 
considerations.187  For example:
● Will it be cost effective?
● Actuarial standards of practice. 
● Regulatory and legal requirements.
● Can the IT (Information Technology) department easily implement the change?
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181 See Section 5.2 of Generalized Linear Models for Insurance Rating. 
182 Analysis of the deviance residuals, to be discussed subsequently, can help the actuary to choose.
183 Recall that one can also use an overdispersed Poisson.
184 See Section 5.3 of Generalized Linear Models for Insurance Rating. 
185 For a further discussion of p-values see the following subsection, the ASA statement not on the syllabus.
186 There are automated variable selection algorithms, which are not on the syllabus.
187 See ASOP 12: Risk Classification.



ASA Statement on Statistical Significance and P-values:188 189 

Introduction

Increased quantification of scientific research and a proliferation of large, complex datasets in 
recent years have expanded the scope of applications of statistical methods. This has created 
new avenues for scientific progress, but it also brings concerns about conclusions drawn from 
research data. The validity of scientific conclusions, including their reproducibility, depends on 
more than the statistical methods themselves. Appropriately chosen techniques, properly 
conducted analyses and correct interpretation of statistical results also play a key role in 
ensuring that conclusions are sound and that uncertainty surrounding them is represented 
properly. 

Underpinning many published scientific conclusions is the concept of “statistical significance,” 
typically assessed with an index called the p-value. While the p-value can be a useful statistical 
measure, it is commonly misused and misinterpreted. This has led to some scientific journals 
discouraging the use of p-values, and some scientists and statisticians recommending their 
abandonment, with some arguments essentially unchanged since p-values were first introduced. 

In this context, the American Statistical Association (ASA) believes that the scientific community 
could benefit from a formal statement clarifying several widely agreed upon principles underlying 
the proper use and interpretation of the p-value. The issues touched on here affect not only 
research, but research funding, journal practices, career advancement, scientific education, 
public policy, journalism, and law. This statement does not seek to resolve all the issues relating 
to sound statistical practice, nor to settle foundational controversies. Rather, the statement 
articulates in non-technical terms a few select principles that could improve the conduct or 
interpretation of quantitative science, according to widespread consensus in the statistical 
community.

What is a p-value?

Informally, a p-value is the probability under a specified statistical model that a statistical 
summary of the data (for example, the sample mean difference between two compared groups) 
would be equal to or more extreme than its observed value.
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Principles

1. P-values can indicate how incompatible the data are with a specified statistical model.

A p-value provides one approach to summarizing the incompatibility between a particular set of 
data and a proposed model for the data. The most common context is a model, constructed 
under a set of assumptions, together with a so-called “null hypothesis.” Often the null hypothesis 
postulates the absence of an effect, such as no difference between two groups, or the absence 
of a relationship between a factor and an outcome. The smaller the p-value, the greater the 
statistical incompatibility of the data with the null hypothesis, if the underlying assumptions used 
to calculate the p-value hold. This incompatibility can be interpreted as casting doubt on or 
providing evidence against the null hypothesis or the underlying assumptions.

2. P-values do not measure the probability that the studied hypothesis is true, or the probability 
that the data were produced by random chance alone.

Researchers often wish to turn a p-value into a statement about the truth of a null hypothesis, or 
about the probability that random chance produced the observed data. The p-value is neither. It 
is a statement about data in relation to a specified hypothetical explanation, and is not a 
statement about the explanation itself.

3. Scientific conclusions and business or policy decisions should not be based only on whether 
a p-value passes a specific threshold.

Practices that reduce data analysis or scientific inference to mechanical “bright-line” rules (such 
as “p < 0.05”) for justifying scientific claims or conclusions can lead to erroneous beliefs and 
poor decision-making. A conclusion does not immediately become “true” on one side of the 
divide and “false” on the other. Researchers should bring many contextual factors into play to 
derive scientific inferences, including the design of a study, the quality of the measurements, the 
external evidence for the phenomenon under study, and the validity of assumptions that underlie 
the data analysis. Pragmatic considerations often require binary, “yes-no” decisions, but this 
does not mean that p-values alone can ensure that a decision is correct or incorrect. The 
widespread use of “statistical significance” (generally interpreted as “p ≤ 0.05”) as a license for 
making a claim of a scientific finding (or implied truth) leads to considerable distortion of the 
scientific process.
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4. Proper inference requires full reporting and transparency. 

P-values and related analyses should not be reported selectively. Conducting multiple analyses 
of the data and reporting only those with certain p-values (typically those passing a significance
threshold) renders the reported p-values essentially uninterpretable. Cherry-picking promising
findings, also known by such terms as data dredging, significance chasing, significance 
questing, selective inference and “p-hacking,” leads to a spurious excess of statistically 
significant results in the published literature and should be vigorously avoided. One need not 
formally carry out multiple statistical tests for this problem to arise: Whenever a researcher 
chooses what to present based on statistical results, valid interpretation of those results is 
severely compromised if the reader is not informed of the choice and its basis. Researchers 
should disclose the number of hypotheses explored during the study, all data collection 
decisions, all statistical analyses conducted and all p-values computed. Valid scientific 
conclusions based on p-values and related statistics cannot be drawn without at least knowing 
how many and which analyses were conducted, and how those analyses (including p-values) 
were selected for reporting.

5. A p-value, or statistical significance, does not measure the size of an effect or the importance 
of a result.

Statistical significance is not equivalent to scientific, human, or economic significance. Smaller 
p-values do not necessarily imply the presence of larger or more important effects, and larger p-
values do not imply a lack of importance or even lack of effect. Any effect, no matter how tiny, 
can produce a small p-value if the sample size or measurement precision is high enough, and 
large effects may produce unimpressive p-values if the sample size is small or measurements 
are imprecise. Similarly, identical estimated effects will have different p-values if the precision of 
the estimates differs.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or 
hypothesis.

Researchers should recognize that a p-value without context or other evidence provides limited
information. For example, a p-value near 0.05 taken by itself offers only weak evidence against 
the null hypothesis. Likewise, a relatively large p-value does not imply evidence in favor of the 
null hypothesis; many other hypotheses may be equally or more consistent with the observed 
data. For these reasons, data analysis should not end with the calculation of a p-value when 
other approaches are appropriate and feasible.
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Other approaches

In view of the prevalent misuses of and misconceptions concerning p-values, some statisticians 
prefer to supplement or even replace p-values with other approaches. These include methods 
that emphasize estimation over testing, such as confidence, credibility, or prediction intervals;
Bayesian methods; alternative measures of evidence, such as likelihood ratios or Bayes 
Factors; and other approaches such as decision-theoretic modeling and false discovery rates. 
All these measures and approaches rely on further assumptions, but they may more directly 
address the size of an effect (and its associated uncertainty) or whether the hypothesis is 
correct.

Conclusion

Good statistical practice, as an essential component of good scientific practice, emphasizes 
principles of good study design and conduct, a variety of numerical and graphical summaries of 
data, understanding of the phenomenon under study, interpretation of results in context, 
complete reporting and proper logical and quantitative understanding of what data summaries 
mean. No single index should substitute for scientific reasoning.
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Transformation of Predictor Variables:190

In many cases, a variable will need to be transformed in some way such that the resulting GLM 
is a better fit to the data. We have already discussed how with a log link function it often make 
sense to take the log of a continuous variable. 

Regardless of whether the original variable has been logged or not, it is crucial to test the 
assumption of linearity and make adjustments where appropriate.191 
Partial Residual Plots are one way for the actuary to detect such non-linear effects.

Partial Residual Plots:192

Concentrate on one of the explanatory variables Xj.
Then the partial residuals are: ri = (ordinary residual) g’(µi) + xij β̂ j. 193

In a Partial Residual Plot, we plot the partial residuals versus the variable of interest.

If there seems to be curvature rather than linearity in the plot, that would indicate a 
departure from linearity between the explanatory variable of interest and g(µ), adjusting 
for the effects of the other independent variables.

For a log link, g’(µ) = 1/µ, so that:

 ! ri = yi - µi
µi

 + β̂ j xij. 
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192 See Section 5.4.1 of Generalized Linear Models for Insurance Rating 
193 For the identity link ratio, this matches the definition of the partial residual for multiple regressions; the second 
term removes the effect of the jth variable on the prediction of the ith response. leaving the partial residual. 



For example, assume a GLM where the fitted coefficient on ln[age of building] is -0.314.
Assume the following graph of the partial residuals:194 

!

The linear estimate of the GLM, -0.314x, is superimposed over the plot of the partial residuals. 
The points are missing the line in a systematic way, indicating that this model can be improved.
The model is overpredicting for risks where log building age is less than 2.5, underpredicts 
between 2.5 and 3.25, and once again overpredicts for older buildings.

As will be discussed subsequently, one can add polynomial terms and examine the resulting 
graphs of partial residuals.

Binning Continuous Predictors:195 

If there is nonlinearity, one possible fix for a continuous variable is to group it into intervals.

For example, rather than treat age of construction as a continuous variable, one can group it 
into several categories. We have converted a continuous variable into a categorical variable.

For their example, the authors group age of construction into ten bins.196  
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195 See Section 5.4.2 of Generalized Linear Models for Insurance Rating. 
196 The bins were chosen so that they each have roughly the same amount of data.
While having bins with roughly equal amounts of data has advantages, it is not a necessity.



Figure 9 in the syllabus reading shows the resulting model:197

!

“The model picked up a shape similar to that seen in the points of the partial residual plot. 
Average severity rises for buildings older than ten years, reaching a peak at the 15-to-17 year 
range, then gradually declining.”

Disadvantages of binning (grouping) continuous variables:
1. Adds parameters to the model.198 
2. Continuity in the estimates is not guaranteed.
! There is no guarantee that the pattern among intervals makes sense.199 200 
3. Variation within intervals is ignored.
! For example, it may be that the relativity for age of construction less than 5 years may be 
! significantly different than that for 6 to 10 years. However, if we use an interval consisting 
! of less than 10, our model can not pick up any such difference.
4. There may not be enough data in each bin to be credible.
5. There could be non-intuitive results, such as reversals.
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198 By the principle of parsimony, we wish to avoid adding unnecessary parameters to the model.
199 For example, in the previous graph, the estimate for 21-23 years does not follow the general pattern.
200 One may be able to alleviate this problem by applying some smoothing process to the estimates from the model.
Alternately, one could group together two or more intervals.



Adding Polynomial Terms:201

Rather than a model that uses β0 + β1x1 + β2x1 + ...,
one can use β0 + β1x1 + β2x12 + ..., or β0 + β1x1 + β2x12 + β3x13 + ...
The more polynomial terms that are included, the more flexibility, at the cost of greater 
complexity.

The authors added the square of the logged building age to their model. Here is the resulting 
plot of partial residuals with the curve formed by both building age terms superimposed:202 203

!
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202 See the lefthand panel in Figure 10 in Generalized Linear Models for Insurance Rating. T
203 The definition of partial residuals was extended to include all terms related to the variable being evaluated; 
i.e., the βjxij’s for all polynomial terms are added back to the working residual rather than the single βjxij term. 



Then the authors added the cube of the logged building age to their model. Here is the resulting 
plot of partial residuals with the curve formed by both building age terms superimposed:204 205

!

“This perhaps yields a better fit, as the points seem to indicate that the declining severity as 
building age increases does taper off toward the higher end of the scale.”

Unfortunately, it is hard to interpret these models that include powers of the logged building age.

“One potential downside to using polynomials is the loss of interpretability. From the 
coefficients alone it is often very difficult to discern the shape of the curve; to understand the 
model’s indicated relationship of the predictor to the target variable it may be necessary to graph 
the polynomial function.”

“Another drawback is that polynomial functions have a tendency to behave erratically at the 
edges of the data, particularly for higher-order polynomials.”206

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 298
  

204 See the righthand panel of Figure 10 in Generalized Linear Models for Insurance Rating. 
205 The definition of partial residuals was extended to include all terms related to the variable being evaluated; 
i.e., the βjxij’s for all polynomial terms are added back to the working residual rather than the single βjxij term. 
206 Splines can suffer from the same problem. This can be solved by constraining the function to be linear at the 
edges; this what is done for natural cubic splines, to be discussed subsequently,



Continuing the age of construction example, here is the partial residual plot that would result if 
we were instead to use five polynomial terms:207. 

	

	       

“The fitted curve veers sharply upward near the upper bound of the data, and would most likely
generate unreasonably high predictions for ages of construction higher than typical.”

Drawbacks of using polynomials:
1. Loss of interpretability
2. Tendency to behave erratically at the edges of the data
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Using Piecewise Linear Functions:208 

Let X+ be X if X ≥ 0 and 0 if X < 0.
Then a hinge function is: max[0, X - c)] = (X - c)+, for some constant c.
The constant c would be called the breakpoint. 
Hinge functions can be used to create piecewise linear functions which can be used in GLMs.

For example, let X = ln[AOI]. Then a usual linear estimator is: β0 - 0.314 x + ...
Using instead a hinge function: β0 + 1.225 x - 2.269 (x - 2.75)+ + .....209 

Here is a graph of the broken line that results from including the hinge function:

!
1.5 2.0 2.5 3.0 3.5 4.0 4.5

log of AOI

2.0

2.5

3.0

For ln[AOI] < 2.75, we have slope 1.225, while for ln[AOI] > 2.75 we have a slope of: 
1.225  - 2.269 = -1.044.

Instead we can use two hinge functions: 
β0 + 1.289 x - 2.472 (x - 2.75)+ + 1.170 (x - 3.60)+ + ....210
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209 See Table 6 in Generalized Linear Models for Insurance Rating, “adding a breakpoint at 2.75.”
210 See Table 7 in Generalized Linear Models for Insurance Rating, “adding an additional breakpoint at 3.6.”



Here is a graph of the broken line that results from including two hinge functions:

For ln[AOI] < 2.75,we have slope 1.289, 
for 3.60 > ln[AOI] > 2.75 the slope is: 1.289 - 2.472 = -1.183, 
while for 3.60 > ln[AOI] > 3.60 the slope is: 1.289 - 2.472 + 1.170  = -0.013.

Here is a graph of the partial residuals for the straight line:211 

!  
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Here is a graph of the partial residuals for the broken line that results from using one hinge 
function:212 

!

The model using the broken line does a better job of fitting the authors’ data than the model that 
uses the straight line.
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Here is a graph of the partial residuals for the broken line using two hinge functions:213 

!

The model using two hinge functions may do a somewhat better job of fitting the authors’ data 
than the model that uses one hinge function. With limited data it is hard to tell.214 

Hinge functions provide more flexibility at the cost of greater complexity.

The breakpoints must be selected by the user.
“Generally, break points are initially guesstimated by visual inspection of the partial residual plot, 
and they may be further refined by adjusting them to improve some measure of model fit.
However, the GLM provides no mechanism for estimating them automatically.”215

At each breakpoint, the hinge function is not smooth; its first derivative is not 
continuous. While the function is continuous, it abruptly changes direction at each breakpoint. 
This potential downside is not shared by natural cubic splines, to be discussed subsequently.

Drawbacks of using piecewise linear functions:
1. The need to select the breakpoints.
2. Lack of smoothness.
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214 “As this leveling-off effect comports with our intuition, we may decide to keep the third hinge function term in the 
model.”
215 MARS is a variant of the GLM, which among other things, fits non-linear curves using hinge function, and
does it in an automated fashion with no need for tweaking by the user.



A Cherry Tree Example:

We are given the height, diameter, and volume of 31 black cherry trees:216 

Diameters are: 83, 86, 88, 105, 107, 108, 110, 110, 111, 112, 113, 114, 114, 117, 120, 129, 129, 
133, 137, 138, 140, 142, 145, 160, 163, 173, 175, 179, 180, 180, 206.

Heights are: 70, 65, 63, 72, 81, 83, 66, 75, 80, 75, 79, 76, 76, 69, 75, 74, 85, 86, 71, 64, 78, 80, 
74, 72, 77, 81, 82, 80, 80, 80, 87.

Volumes are: 103, 103, 102, 164, 188, 197, 156, 182, 226, 199, 242, 210, 214, 213, 191, 222, 
338, 274, 257, 249, 345, 317, 363, 383, 426, 554, 557, 583, 515, 510, 770.

I took X1 = ln[diameter], X2 = ln[height], and Y = volume.
A GLM was fit using a Gamma Distribution and a log link function.

The fitted parameters were: β̂ 0 = -8.94859, β̂ 1 = 1.98041, β̂ 2 = 1.13288.
ŷ  = exp[-8.94859 + 1.9804 ln[diameter] + 1.13288 ln[height]] 
= 0.00012992 diameter1.9804 height1.13288.

The covariance matrix is: 
0.556725 0.00760542 -0.13715
0.00760542 0.00545975 -0.00788943
-0.13715 -0.00788943 0.0405552

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

Exercise: Based on geometry, it would make sense for β1 = 2.  Test whether β1 = 2.
[Solution: (1.98041 - 2) / 0.00545975  = -0.265.  p-value is: 2 Φ[-0.265] = 79.1%.
Comment: We do not reject the null hypothesis that β1 = 2.]

Exercise: Based on geometry, it would make sense for β2 = 1.  Test whether β2 = 1.
[Solution: (1.13288 - 1) / 0.0405552  = 0.660.  p-value is: 2 {1-  Φ[0.660]} = 50.9%.
Comment: We do not reject the null hypothesis that β2 = 1.]
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Data from a study by Ryan, Joiner, and Ryan.



The first predicted volume is: exp[-8.94859 + 1.9804 ln[83] + 1.13288 ln[70]] = 101.04.
Thus the first residual is: 103 - 101.04 = 1.96.

The residuals are: 1.96, 3.32, 1.31, -2.19, -9.14, -9.43, -9.12, -8.85, 16.96, 1.22, 28.50, 2.06, 
6.06, 16.79, -35.74, -35.71, 36.48, -50.59, -20.02, -0.86, 23.33, -23.46, 38.15, 0.29, -2.43, 
43.48, 27.42, 44.45, -29.52, -34.52, -12.21.

For this example, g(µ) = ln(µ). Thus g’(µ) = 1/µ. 

� 

⇒ ri = yi - µi
µi

 + β̂ j xij.

Thus for ln[diameter], the partial residuals are: (yi - yi^ ) / yi^  + ln[(diameter)i] 1.98041.
The first partial residual is: (103 - 101.04)/101.04 + ln[83](1.980401) = 8.77.

The partial residuals for the ln[diameter] are: 8.77, 8.85, 8.88, 9.2, 9.21, 9.23, 9.25, 9.26, 9.41, 
9.35, 9.50, 9.39, 9.41, 9.52, 9.32, 9.49, 9.75, 9.53, 9.67, 9.75, 9.86, 9.75, 9.97, 10.05, 10.08, 
10.29, 10.28, 10.36, 10.23, 10.22, 10.54.
Here is a graph of these partial residuals versus ln[diameter]:

! 4.4 4.6 4.8 5.0 5.2
log diameter

9.0

9.5

10.0

10.5
partial residual

A departure from linearity is not evident.217 
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Exercise: For ln[height] what is the first partial residual?
[Solution: The partial residuals are: (yi - yi^ ) / yi^  + ln[(height)i] 1.13288.
The first partial residual is: (103 - 101.04)/101.04 + ln[70] (1.13288) = 4.83.

The partial residuals for the ln[height] are: 4.83, 4.76, 4.71, 4.83, 4.93, 4.96, 4.69, 4.84, 5.05, 
4.90, 5.08, 4.92, 4.94, 4.88, 4.73, 4.74, 5.15, 4.89, 4.76, 4.71, 5.01, 4.90, 4.99, 4.85, 4.92, 5.06, 
5.04, 5.05, 4.91, 4.90, 5.04.
Here is a graph of these partial residuals versus ln[height]:

! 4.15 4.20 4.25 4.30 4.35 4.40 4.45
log height

4.7

4.8

4.9

5.0

5.1

partial residual

A departure from linearity is not evident.
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Natural Cubic Splines:218 219

Another way to handle non-linear effects is to use Regression Splines. 
An important special case are Natural Cubic Splines. 

One has to choose breakpoints, called knots.220 The spline will be continuous at these knots.
In between each of the knots, a cubic spline follows a cubic polynomial.
Below the first knot and above the last knot, a natural cubic spline is linear.

“As with polynomial functions, natural cubic splines do not lend themselves to easy 
interpretation based on the model coefficients alone, but rather require graphical plotting to 
understand the modeled effect.”

An example of a natural cubic spline, with 5 knots at 2, 4, 6, 8, and 10, fit to some data:221
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218 See Section 5.4.5 of Generalized Linear Model for Insurance Rating.
219 Little detail is given. For more detail, see An Introduction to Statistical Learning with Applications in R
by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, on Exam MAS-1.
220 One has to choose how many knots to use and where to place them. 
221 The fitted spline relates nitrogen oxides concentration (in parts per 10 million) to the weighted mean of the 
distances to five Boston employment centers.



Some of characteristics of natural cubic splines:222

● The first and second derivatives of the fitted curve function are continuous 
! at the breakpoints (knots).223 224 

● The fits at the edges of the data (before the first selected breakpoint and after the last) 
! are restricted to be linear.225 226

● The use of breakpoints makes it more suitable than regular polynomial functions for
! modeling more complex effect responses, such as those with multiple rises and falls.
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222 As listed in Generalized Linear Model for Insurance Rating.
223 Also, the spline is continuous at each of the breakpoints (knots).
224 In a practical sense this means that the curve will appear fully “smooth” with no visible breaks in the pattern.
225 This curtails the potential for the kind of erratic edge behavior, exhibited for example by regular polynomial 
functions.
226 This linearity at the the edges is what distinguishes a natural cubic spline from a cubic spline.



An Example of Fitting a Natural Cubic Spline:227

Start with 12 observations: {3, 5}, {6, 11}, {9, 13}, {12, 18}, {15, 22}, {18, 23}, {21,19}, {24, 17}, 
{27, 16}, {33, 14}, {36, 10}, {39, 11}.

Use three knots at 10, 20 and 30.228  A natural cubic spline can be written as:229 

Y = β0 + β1X + β2 {
(X-10)+3  - (X-30)+3

30 - 10
 - (X-20)+3  - (X-30)+3

30 - 20
}.

Using a computer, we minimize the sum of squared errors. The fitted betas are:230 
β0 = 4.578601, β1 = 0.964608, β2 = -0.058667.

Here is the data and the fitted natural cubic spline with knots at 10, 20 and 30:231 

! 10 20 30 40

10

15

20
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227 Not on the syllabus of this exam. Some people will benefit from seeing a concrete example.
228 One has to choose how many knots to use and where to place them. 
229 You are not responsible for this representation of a natural cubic spline. The sub-plus means that if what is 
inside is negative then we make it zero, while otherwise we leave what is inside alone. 
230 The sum of squared errors is 52.24.
231 At each of the knots, the cubic spline is continuous, and has continuous first and second derivatives.
Below 10 and above 30, the natural cubic spline is linear.



It is interesting to see what happens if we use more knots. 
For example, let us take four knots at 8, 16, 24, and 32.

Then one can write a natural cubic spline as:

Y = β0 + β1X + β2 {
(X-8)+3  - (X-32)+3

32 - 8
 - (X-24)+3  - (X-32)+3

32 - 24
} 

              + β3 {
(X-16)+3  - (X-32)+3

32 - 16
 - (X-24)+3  - (X-32)+3

32 - 24
}. 

Using a computer, we minimize the sum of squared errors. The fitted betas are:232 
β0 = 0.412248, β1 = 1.559231, β2 = -0.165939, β3 = 0.249697.

Here is the data and the fitted natural cubic spline with knots at 8, 16, 24, and 32:233 

! 10 20 30 40

5

10

15

20

This natural cubic spline with four knots seems to do a better job than the natural cubic spline 
with only three knots.
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232 The sum of squared errors is 11.68.
233 At each of the knots, the cubic spline is continuous, and has continuous first and second derivatives.
Below 8 and above 32, the natural cubic spline is linear.



Grouping Categorical Variables:234 

Some predictor variables are ordinal; they are discrete with several categories with a natural 
order. Sometimes it is useful for modeling purposes to group such predictor variables into fewer 
categories.235  This is particularly useful when there are many categories.236 

For example, workers compensation claims are categorized as: medical only, temporary total, 
minor permanent partial, major permanent partial, permanent total, and fatal. For some 
purposes it might be useful to group the first three categories into nonserious and the last three 
categories into serious.

One can start with a model without grouping. Statistical tests can determine whether the 
coefficients of adjacent levels are significantly different. Then one can group adjacent levels with 
similar fitted coefficients. Now run a new model using these groupings, and iterate the 
procedure. One needs to balance the competing priorities of: predictive power, parsimony, and 
avoiding overfitting.

Interactions:237

If x1 and x2 are predictor variables, then we can include an interaction term: x1x2.
Then the model would be: g(µ) = β0 + β1x1 + β2x2 + β3x1x2 + ....
This provides more flexibility at the cost of complexity.238 

For example let x1 be gender and x2 be age. Then if we include an interaction term the effect of 
age depends on gender, and the effect of gender depends on age.

The syllabus reading gives an example with building occupancy class and sprinkler status.239 
Models are fit both with and without an interaction term.240  The model with interactions is:

µ = (mean for base) exp[0.2303 x1 + 0.4588 x2 + 0.0701 x3 - 0.2895 x4 
! ! ! ! - 0.2847x1x4 - 0.0244 x2x4 - 0.2622 x3x4],
where x1 = 1 if occupancy class 2, x2 = 1 if occupancy class 3, x3 = 1 if occupancy class 4, 
x4 = 1 if sprinklered, and occupancy class 1 without sprinklers is the base.
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234 See Section 5.5 in Generalized Linear Models for Insurance Rating. 
235 This is analogous to Robertson grouping classes into Hazard Groups.
236 The syllabus reading uses the example of driver age, which can be thought of as either continuous or discrete.
In the case of age, there may not be any clear breakpoints to use for grouping; actuarial judgement may be needed.
237 See Section 5.6 in Generalized Linear Models for Insurance Rating. 
238 One would only include the interaction term if its coefficient were significantly different from zero.
239 This is a commercial building claims frequency model using a Poisson with a log link function.
240 See Tables 8 and 9 in Generalized Linear Models for Insurance Rating.  
While two of the interaction terms are significantly different from zero, the remaining one is not.
They show an intercept which only makes sense if there are other predictor variables in the model.



For a non-sprinklered building in occupancy class 2, the multiplicative relativity to the base is: 
exp[0.2303] = 1.259.

For a sprinklered building in occupancy class 2, the multiplicative relativity to the base is: 
exp[0.2303 - 0.2895 - 0.2847] = 0.709.

Exercise: For a non-sprinklered building in occupancy class 4, determine the multiplicative 
relativity to the base.
[Solution: exp[0.0701] = 1.073.]

Exercise: For a sprinklered building in occupancy class 4, determine the multiplicative relativity 
to the base.
[Solution: exp[0.0701 - 0.2895 - 0.2622] = 0.618.
Comment: For occupancy class 4, the effect of sprinklers is small, while for occupancy class 2, 
the effect of sprinklers is large.]

The syllabus reading also shows another fitted model, with occupancy class, sprinklered, 
ln[AOI/200,000], plus an interaction term between sprinklered and ln[AOI/200,000]:241

µ = (mean for base) exp[0.2919 x1 + 0.3510 x2 + 0.0370 x3 - 0.5153 x4 + 0.4239 x5
! ! ! !  - 0.1032 x4x5],
where x1 = 1 if occupancy class 2, x2 = 1 if occupancy class 3, x3 = 1 if occupancy class 4, 
x4 = 1 if sprinklered, x5 = ln[AOI/200,000], 
and AOI = 200,000 in occupancy class 1 without sprinklers is the base.

For a non-sprinklered building in occupancy class 2 with AOI = 500,000, the multiplicative 
relativity to the base is: exp[0.2919 + 0.4239 ln[2.5]] = 1.975.

Exercise: For a sprinklered building in occupancy class 2 with AOI = 500,000, 
determine the multiplicative relativity to the base.
[Solution: exp[0.2919 - 0.5153 + 0.4239 ln[2.5] - 0.1032 ln[2.5]]  = 1.073.]

For range of sizes of AOI for buildings that are insured, the expected frequency increases at a 
slower rate with AOI for sprinklered buildings than for non-sprinklered buildings.
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241 See Table 12 in Generalized Linear Models for Insurance Rating. They show an intercept of -3.771, which 
implies an expected frequency for the base level of: exp[-3.771] = 2.3%. 



Loglikelihood:242 

The loglikelihood is the sum of the contributions of the ln[density] at each of the observations. All 
other things being equal, a larger loglikelihood indicates a better fit. However, the principle of 
parsimony means that we should not add additional parameters to a model unless it significantly  
increases the loglikelihood.

The saturated model has as many parameters as the number of observations.
Each fitted value equals the observed value.
The saturated model has the largest possible likelihood, of models of a given form.
The null model has only one parameter, the intercept. 
The null model has the smallest possible likelihood, of models of a given form.243
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242 See Section 6.1.1 in Generalized Linear Models for Insurance Rating.
They do not give any details on the form of the scaled deviance for the different distributions.
See for example, An Introduction to Generalized Linear Models by Dobson and Barnett.
243 In the context of GLMs we would be comparing models with the same distributional form and link function, that 
have been fit to the same data.



Deviance:244

The scaled deviance is twice the difference between the maximum loglikelihood for the 
saturated model (with as many parameters as data points) and the maximum 
loglikelihood for the model of interest. 

D* = Scaled Deviance
!  = 2 {(loglikelihood for the saturated model) - (loglikelihood for the fitted model)}.

The smaller the scaled deviance, the better the fit of the GLM to the data.245

Maximizing the loglikelihood is equivalent to minimizing the scaled deviance.

By definition, the scaled deviance of the saturated model is zero. Even though the saturated 
model fits the data perfectly we would not use it to predict the future, since the saturated model 
is overfit; the saturated model picks up too much of the randomness in the data (called the 
noise).

The null model (with only an intercept) has the largest possible scaled deviance while the 
saturated model has the smallest possible scaled deviance of zero. The scaled deviance of a 
fitted model will lie between those two extremes.

We will be comparing the deviance of models with the same distributional form, and same link 
function, that have been fit to the same data.246 

D = unscaled deviance = (scaled deviance) (dispersion parameter) = D* φ.247

The unscaled deviance is independent of the dispersion parameter and thereby useful for 
comparing models with different estimates of the dispersion parameter. 248
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244 See Section 6.1.2 in Generalized Linear Models for Insurance Rating.
245 Subsequently we will discuss how to test whether an improvement in scaled deviance is statistically significant.
246 If a variable has missing values for some records, the default behavior of most model fitting software
is to toss out those records when fitting the model. In that case, the resulting measures of fit are no longer 
comparable, since the second model was fit with fewer records than the first.
247 Confusingly, while some sources use the same terminology as the syllabus reading, some other sources reverse 
the labels,
248 For cases where the dispersion parameter is one, such as for a Poisson or Negative Binomial Distribution, this is 
not an advantage. For other cases, such as a Gamma or Normal Distribution, this is an advantage. 



Nested Models and the F-Test:249 250 

We can use the F-Test to compare two nested models, in other words when one model is a 
special case of the other. The bigger (more complex) model always has a smaller (better) 
unscaled deviance than the smaller (simpler) model. The question is whether the unscaled 
deviance of the bigger model is significantly better than that of the smaller model (special case).

Assume that we have two nested models. 
Then the test statistic (asymptotically) follows an F-Distribution with numbers of degrees 
of freedom equal to: ν1 = the difference in number of parameters, and 
ν2 = number of observations minus number of fitted parameters for the bigger model.251  

The test statistic is: (DS - DB) / (number  of  added parameters) 
 φ̂B

 ~ FdfS - dfB, dfB
. 

DS = unscaled deviance for the smaller (simpler) model. 
DB = unscaled deviance for the bigger (more complex) model.
dfS = number of degrees of freedom for the smaller (simpler) model.
       = number of observations minus number of fitted parameters for the simpler model.
dfB = number of degrees of freedom for the bigger (more complex) model
      = number of observations minus number of fitted parameters for the more complex model.
number of added parameters = dfS - dfB.
φ̂B  = estimated dispersion parameter for the bigger (more complex) model.252 253 254 
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249 See Section 6.2.1 in Generalized Linear Models for Insurance Rating.
250 This F-Test is analogous to that used to test slopes in multiple regression.
251 A Table of the F-Distribution is not attached to your exam, although they could give some values in a question.
An F-Distribution is the ratio of two independent Chi-Square Distributions, with each Chi-Square divided by its 
number of degrees of freedom. ν1 = the number of degrees of freedom of the Chi-Square in the numerator. 
ν2 = the number of degrees of freedom of the Chi-Square in the denominator.
If ν1 = 1, then the F-Distribution is related to the t-distribution.

Prob[F-Distribution with 1 and n degrees of freedom > c2] =
Prob[absolute value of t-distribution with n  degrees of freedom > c].
Thus if the difference in the number of parameters is one, then this test reduces to a t-test.
252 The syllabus reading does not discuss how to estimate the dispersion parameter. One way to estimate the 
dispersion parameter in a model is as the ratio of the unscaled deviance to the number of degrees of freedom of the 
model.
253 There is no requirement that the estimated dispersion parameters of the two models be equal.
254 For cases where the dispersion parameter is one, such as for a Poisson or Negative Binomial Distribution, an 
actuary would normally use instead the likelihood ratio test, not discussed in the syllabus reading.
See “A Practitioners Guide to Generalized Linear Models,” by Duncan Anderson, Sholom Feldblum, Claudine 
Modlin, Dora Schirmacher, Ernesto Schirmacher and Neeza Thandi, in the 2004 CAS Discussion Paper Program.



If the F-Statistic is sufficiently big, then reject the null hypothesis that the data is from the 
smaller model in favor of the alternate hypothesis that the data is from the bigger 
model.255 

Exercise: A GLM using a Gamma Distribution has been fit for modeling expenditures upon 
admission to a hospital. There are 150 observations. It uses 25 variables.
It uses 4 categories of self-rated physical health: poor, fair, good, and very good. 
The unscaled deviance is 35.1.
An otherwise similar GLM excluding self-rated physical health has an unscaled deviance of 
38.4.  The estimated dispersion parameter for the more complex model is 0.3.
Discuss how you would determine whether physical health is a useful variable for this model.
[Solution: The more complex model has 25 variables, and 150 - 25 = 125 degrees of freedom.
In order to incorporate physical health, avoiding aliasing, we need 4 - 1 = 3 variables.
Thus the simpler model has 22 variables, and 150 - 22 = 128 degrees of freedom.
The difference in degrees of freedom is: 128 - 125 = 3 = number of additional variables.

Test statistic is: DS - DB
(number of added parameters) φ̂B

 = 38.4 - 35.1
 (3) (0.3)

 = 3.67.

We compare the test statistic to an F-distribution with 3 and 125 degrees of freedom.
The null hypothesis is to use the simpler model, the one without physical health
The alternate hypothesis is to use the more complex model.
We reject the null hypothesis if the test statistic is sufficiently big. 
Comment: The syllabus reading gives a similar example.
It may be helpful to briefly review the F-Test in Statistics, covered on an earlier exam.]

Using a computer, the p-value (probability-value) of this test is 1.4%.256 
Thus at a 2.5% significance level we would reject the simpler model in favor of the more 
complex model. At a 1% significance level we would not reject the simpler model.

If we had used a 2.5% significance level, we would have decided to use physical health.
We had used four levels of physical health: poor, fair, good, and very good. 
The next step would be to see how many of these levels are useful. For example, does it 
significantly improve model performance to separate good from very good?
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255 The F-Distribution with ν1 and ν2 > 2 degrees of freedom has a mean of ν2/(ν2 - 1). For ν2 large this mean is 
approximately 1. We reject the null hypothesis if the F-Statistic is significantly greater than 1.
256 The 2.5% critical value is 3.222, while the 1% critical value is 3.942.  
In other words, for the F-Distribution with 3 and 125 degrees of freedom, the survival function at 3.222 is 2.5%.



F = DS - DB
(number of added parameters) φ̂B

.

φ̂B  in the denominator is the estimate of the dispersion parameter for the bigger model. 

It turns out that φ̂B  is a good estimate of the amount by which we can expect unscaled deviance 
to go down for each new parameter added to the model, if the new parameter adds no 
predictive power. Thus 
! φ̂B  (number of added parameters) 
! ! = expected drop in unscaled deviance when there is no added predictive value.

Thus for the added complexity to add predictive value to the model, it must reduce unscaled 
deviance by significantly more than φ̂B  (number of added parameters), the denominator of the 
F-statistic. 

Thus in the absence of added predictive value, the F-statistic has an expected value of  
approximately 1.  If the F-statistic is significantly greater than 1, we may conclude that the added 
variables do indeed improve the model.

Statistical theory says that the F-statistic follows an F distribution. Thus we can perform an 
F-test, as in the previous example, to determine whether the F-Statistic is significantly bigger 
than one. If the p-value of the F-test is sufficiently small, we may conclude that the parameters 
added to the model are a significant improvement; in other words, one would use the bigger 
rather than the smaller model.
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AIC and BIC:257 

AIC and BIC are each methods of comparing models. 
In each case, a smaller value is better.
These penalized measures of fit are particularly useful for comparing models that are not 
nested.

The Akaike Information Criterion (AIC) is used to compare a bunch of models all fit via maximum 
likelihood to the same data.258  The model with the smallest AIC is preferred. For a particular 
model: 
AIC = (-2) (maximum loglikelihood) + (number of parameters)(2).

The number of parameters fitted via maximum likelihood are the betas (slopes plus if applicable 
an intercept).259  

Since the scaled deviance = 
! (2) (saturated max. loglikelihood - maximum loglikelihood for model), 
we can compare between the models: Scaled Deviance +  (number of parameters)(2).260  

Assume for example, assume we have three Generalized Linear Models fit to the same data:

Model # Number of 
Parameters 

Scaled 
Deviance Scaled Deviance  +  (number of parameters)(2)

1 4 888.7 896.7

2 5 886.2 896.2

3 6 884.4 896.4

We prefer Model #2, since it has the smallest AIC.261  

The Bayesian Information Criterion (BIC) can also be used to compare a bunch of models all fit 
via maximum likelihood to the same data.262 The model with the smallest BIC is preferred. 
For a particular model: 
BIC = (-2) (max. loglikelihood) + (number of parameters) ln(number of data points).263 
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257 See Section 6.2.2 in Generalized Linear Models for Insurance Rating.
258 Thus AIC can be applied to Generalized Linear Models. 
259 If a dispersion parameter is fit via maximum likelihood, then the number of parameters in the above formula for 
AIC is one more. However, if one is using AIC to compare models, it does not matter, as long as one is consistent, 
since the only difference is to add the same constant to each AIC.
260 The maximum Iikelihood for the saturated model is the same in each case.
261 In each case, the AIC is: 
Scaled Deviance + (number of parameters)(2) - (2)(loglikelihood for the saturated model).
262 Thus BIC can be applied to Generalized Linear Models.
263 The GLM monograph uses ln and log interchangeably to both mean the natural log.



Since the scaled deviance = (2) (saturated max. loglikelihood - maximum likelihood for model), 
we can compare between the models: 
Scaled Deviance +  (number of parameters) ln(number of data points).264  

Assume that we have three Generalized Linear Models fit to the same data set of size 20:

Model # Number of 
Parameters

Scaled
Deviance Scaled Deviance + (number parameters) ln(20)

1 4 888.7 900.7

2 5 886.2 901.2

3 6 884.4 902.4

We prefer Model #1, since it has the smallest BIC.265  
We note that in this case, using AIC or BIC would result in different conclusions.

BIC is mathematically equivalent to the Schwarz Bayesian Criterion.266 Using the Schwarz 
Bayesian Criterion, one adjusts the loglikelihoods by subtracting in each case the penalty: 
(number of fitted parameters) ln(number of data points) / 2. 
One then compares these penalized loglikelihoods directly; larger is better.
For a model, when BIC is smaller this penalized loglikelihood is bigger and vice-versa.

“As most insurance models are fit on very large datasets, the penalty for additional parameters 
imposed by BIC tends to be much larger than the penalty for additional parameters imposed by 
AIC. In practical terms, the authors have found that AIC tends to produce more reasonable 
results. Relying too heavily on BIC may result in the exclusion of predictive variables 
from your model.”
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264 The maximum Iikelihood for the saturated model is the same in each case.
265 In each case, the BIC is: 
Scaled Deviance + (number of parameters)ln[20] - (2)(loglikelihood for the saturated model).
266 See for example Loss Models, not on the syllabus of this exam.



A Communicable Disease Example:267 

Assume we have the following reported occurrences of a communicable disease in two areas:

Number in Area A Number in Area B Month

8 9 2

8 12 4

10 9 6

11 14 8

14 15 10

17 19 12

13 20 14

15 21 16

17 25 18

15 23 20

Let X1 = 0 if Region A and 1 if Region B.
Let X2 = ln[month].
Fit a GLM with a Poisson using a log link function.
µ = Exp[β0 + β1X1 + β2X2].

The fitted parameters are: β0 = 1.54894, β1 = 0.265964, β2 = 0.435105.

The covariance matrix is: 
0.0618301 -0.00781226 -0.0226385

-0.00781226 0.0138001 -6.28837 x 10-18

-0.0226385 -6.28837 x 10-18 0.00948766

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

Therefore, approximate 95% confidence intervals for the parameters are:
1.54894 ± 1.960 0.0618301 = (1.06, 2.04),
0.265964 ± 1.960 0.0138001  = (0.04, 0.50),
0.435105 ± 1.960 0.00948766  = (0.24, 0.63).

The loglikelihood is: -47.0892.
The Scaled Deviance is: 4.45650.
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267 Adapted from Section 18.4 of Applied Regression Analysis by Draper and Smith, not on the syllabus.



In order to test whether β1 = 0, the test statistic is: 

β̂1 / StdDev[β̂1] = 0.265964 / 0.0138001  = 2.264.
The probability value of a two-sided test is: 2{1 - Φ[2.264]} = 2.4%.268  

Exercise: Test whether β2 = 0.
[Solution: β̂2  / StdDev[ β̂2 ] = 0.435105 / 0.00948766  = 4.467.
The probability value of a two-sided test is: 2{1 - Φ[4.467]} = 0%.
Comment: Using a computer, the p-value is 8 x 10-6.]

Exercise: Test whether β0 = 2.

[Solution: (β̂0  - 2) / StdDev[β̂0 ] = (1.54894 - 2) / 0.0618301  = -1.814.
The probability value of a two-sided test is: 2 Φ[-1.814] = 7.0%.]

Now fit an otherwise similar GLM ignoring region, in other words without the dummy variable X1.
The fitted parameters are: β0 = 1.69074, β2 = 0.435105.

The covariance matrix is: 0.0574127 -0.0226404
-0.0226404 0.00948839

⎛

⎝⎜
⎞

⎠⎟
.

Therefore, approximate 95% confidence intervals for the parameters are:
β0: 1.69074 ± 1.960 0.0574127  = (1.22, 2.16),
β2: 0.435105 ± 1.960 0.00948839  = (0.24, 0.63).

The loglikelihood is: -49.6747.
The Scaled Deviance is: 9.62755.

For the model including region, the loglikelihood is -47.0892.
There are 20 data points and this model has 3 fitted betas.
AIC = (-2)(-47.0892) + (3)(2) = 100.178.
BIC = (-2)(-47.0892) + 3 ln(20) = 103.166.

For the simpler model excluding region, the loglikelihood is -49.6747.
This model has only 2 fitted betas.
AIC = (-2)(-49.6747) + (2)(2) = 103.349.
BIC = (-2)(-49.6747) + 2 ln(20) = 105.341.
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268 There is not a Normal Distribution Table attached to your exam.



The first more complicated model has the smaller AIC and thus is preferred on this basis.
The more complicated model has the smaller BIC and thus is also preferred on this basis.

The first model has a Scaled Deviance of 4.45650, while the second simpler model has a 
Scaled Deviance of 9.62755.  Equivalently, we can use these rather than using AIC or BIC 
directly. 

For the first model, Scaled Deviance + (number of parameters)(2) 
= 4.45650 + (3)(2) = 10.45650.
For the second model, Scaled Deviance + (number of parameters)(2) = 9.62755 + (2)(2) = 
13.62755.
Since 10.45650 < 13.62755, the first more complicated model is preferred on this basis.269 

For the first model, Scaled Deviance + (number of parameters) ln(sample size) 
= 4.45650 + 3 ln(20) = 13.444.
For the second model, Scaled Deviance + (number of parameters) ln(sample size)
 = 9.62755 + 2 ln(20) = 15.619.
Since 113.444 < 15.619, the first more complicated model is also preferred on this basis.270

Deviance Residuals:271 

The (ordinary) residuals are the difference between the observed and fitted values.
Other types of residuals are useful when working with GLMs, including 
Deviance Residuals.272 273  Deviance Residuals provide a more general quantification of the 
conformity of a case to the model specification. 

Deviance Residuals are based on the form of the unscaled deviance for the particular 
distribution. Since the syllabus reading does not discuss these forms, you are not responsible 
for them on this exam. 

The square of the deviance residual is the corresponding term in the sum that is the 
unscaled deviance. 

We take the sign of the deviance residual as the same as that of the (ordinary) residual 
yi - µ̂i .
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269 This is equivalent to comparing AICs.
270 This is equivalent to comparing BICs.
271 See Section 6.3.1 in Generalized Linear Models for Insurance Rating.
272 Working Residuals will be discussed subsequently.
273 Pearson Residuals and Anscombe Residuals are also used, but these are not on the syllabus.
See for example Generalized Linear Models by McCullagh and Nelder,
Generalized Linear Models for Insurance Data by de Jong and Heller, 
and An Introduction to Generalized Linear Models by Dobson and Barnett.



“We can think of the deviance residual as the residual adjusted for the shape of the 
assumed GLM distribution, such that its distribution will be approximately Normal if the 
assumed GLM distribution is correct.”

If the fitted model is appropriate, then we expect:
• The deviance residuals should follow no predictable pattern.274  
• The deviance residuals should be Normally distributed, with constant variance.275 

The syllabus reading shows an example of how to determine whether the deviance residuals 
are Normal. In the first case, a model was fit with a Gamma Distribution:276 

   

In the histogram, the deviance residuals do not seem close to the best fit Normal.277 
In the Normal Q-Q plot, the deviance residuals are not near the comparison straight line.278

We conclude that the deviance residuals are not Normal and therefore the Gamma Distribution 
is probably not a good choice to model this data. 

In the histogram, the deviance residuals are skewed to the right. Thus an Inverse Gaussian 
Distribution with greater skewness than a Gamma Distribution, might be better for modeling this 
data.
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274 If we discover a pattern in the deviance residuals then we can probably improve our model to pick this pattern 
up.
275 The property of constant variance is called homoscedasticity.
Homoscedasticity is more closely followed for standardized deviance residuals, not on the syllabus.
If the model is correct, standardized residuals should (approximately) follow a Standard Normal Distribution.
See an An Introduction to Generalized Linear Models by Dobson and Barnett.
276 See Figure 16 in Generalized Linear Models for Insurance Rating.
277 See for example Loss Models, not on the syllabus of this exam.
278 See for example Loss Models, not on the syllabus of this exam.



Here is similar graphs for a model that was fit with an Inverse Gaussian Distribution:279 

   

In the histogram, the deviance residuals are much closer to the best fit Normal than before. In 
the Normal Q-Q plot, the deviance residuals are much nearer to the comparison straight line 
than before.

We conclude that the deviance residuals are closer to Normal, and therefore the Inverse 
Gaussian Distribution is probably a better choice to model this data than the Gamma 
Distribution. 

Deviance Residuals for Discrete Distributions:

For discrete distributions such as Poisson or Negative Binomial, or distributions that have a 
point mass such as the Tweedie, the deviance residuals will likely not follow a Normal 
Distribution.280  This makes deviance residuals less useful for assessing the appropriateness of 
such distributions, when each record is for a single risk.281 

Fortunately, for data sets where one record may represent the average frequency for a large 
number of risks, deviance residuals are more useful than when each record is for a single 
risk.282 
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279 See Figure 17 in Generalized Linear Models for Insurance Rating.
280 This is because the deviance residuals do not adjust for the discreteness; the large numbers of records having 
the same target values cause the residuals to be clustered together in tight groups.
281 One possible solution is to use randomized quantile residuals, which add random jitter to the discrete points so 
that they wind up more smoothly spread over the distribution. 
282 The target variable will take on a larger number of distinct values, effectively smoothing out the resulting 
distribution causing it to lose much of its discrete property and approach a continuous distribution.



Review, Histograms:

A histogram is an approximate graph of the probability density function. 
First we need to group the data into intervals.

The height of each rectangle = # values in the interval
(total # values) (width of interval)

.

For example, let us assume we observe 100 values and group them into four intervals:
Number that are between -0.15 and -0.05: 10!
Number between -0.05 and 0: 30
Number between 0 and 0.05: 40
Number between 0.05 and 0.15: 20

The first interval has width 0.1.  The probability in the first interval is: 10/100.
We want the area of the first rectangle to be equal to the probability in the first interval.
(0.1)(height) = 10/100. ⇒ Height = (10/100) / (0.1) = 1.

Similarly, the height of the second rectangle is: (30/100) / (0.05) = 6.
The height of the third rectangle is: (40/100) / (0.05) = 8.
The height of the fourth rectangle is: (20/100) / (0.10) = 2.

The histogram of these 100 values:

!

   

The sum of the areas of the rectangles is: (0.1)(1) + (0.05)(6) + (0.05)(8) + (0.1)(2)  = 1.
In general the area under a histogram should sum to one, just as for the graph of a probability 
density function.
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Exercise: Draw a histogram of the following grouped data: 0 -10: 6,!  10-20: 11,! 20-25: 3.

[Solution: The heights are: 6
(20)(10)

 = 0.03, 11
(20)(10)

 = 0.055, and 3
(20)(5)

 = 0.03.

! 10 20 25

0.03

0.055

Comment: The sum of the areas of the rectangles is: (10)(0.03) + (10)(0.055) + (5)(0.03) = 1.
With more data, we would get a better idea of the probability density function from which this 
data was drawn.]

Creating a histogram and comparing the histogram to a graph of a Normal Distribution is one 
way to determine whether the items of interest appear to be Normally distributed.  

First we would want the histogram to look roughly symmetric, since the Normal Distribution is 
symmetric around its mean.283  
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283 If the values are from a Normal Distribution, then one would expect the skewness of the observed values to be 
close to zero. In addition, since a Normal Distribution has a kurtosis of 3, if the values are from a Normal 
Distribution, then one would expect the kurtosis of the observed values to be close to 3.



The following histogram is not symmetric, and thus not likely to be a sample from a Normal 
Distribution:284 

!
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The following histogram looks approximately symmetric:
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284 This histogram was based on 1000 data points simulated from a shifted Gamma Distribution. 



However, one can superimpose upon it a Normal Distribution with parameters µ = X  and 
σ = sample variance: 

! - 0.01 0. 0.01 0.02

20

40

60

80

The histogram of the data seems to be more highly peaked than the Normal and may have 
heavier tails.285 This data has a larger kurtosis than a Normal; the graph displays 
leptokurtosis.286 

The following histogram, is based on a random sample of size 1000 from a Normal Distribution:

! - 0.1 - 0.05 0. 0.05 0.1

2

4

6

8

10
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285 Heavier tails means more probability in both the lefthand and righthand tails.
286 Kurtosis = 4th central moment / square of the variance. All Normal Distributions have a kurtosis of 3, so one 
would want the kurtosis of the data to also be close to 3.  For the data that generated this histogram the kurtosis is 
3.85, indicating somewhat heavier tails than a Normal Distribution. 



I superimposed upon the above histogram a Normal Distribution, with parameters µ = X  
and σ = sample variance:

! - 0.1 - 0.05 0. 0.05 0.1

2
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10

As with any finite sample, while the match between the data and a fitted Normal Distribution 
seems reasonable, it is far from perfect. 
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Next I simulated 10,000 random draws from a Gamma Distribution (with α = 4), and then 
subtracted a constant.287   I then compared a histogram of the data to the probability density 
function of a Normal Distribution with parameters based on the sample mean and sample 
variance of the data:

! - 0.05 0. 0.05 0.1 0.15 0.2 0.25

2

4

6

8

10

The curve of the Normal Distribution is a poor match to the data represented by the 
histogram.288  
Even if we did not know the data was simulated from another distribution, we would conclude 
that this data was not drawn from a Normal Distribution.

Review, Q-Q Plots:

A Q-Q plot or quantile-quantile plot is a graphical technique which can be used to either 
compare a data set and a distribution or compare two data sets. Q-Q plots are most commonly 
used as a visual test of whether data is appears to be from a Normal Distribution. These are 
sometimes called Normal Q-Q Plots. 

The 95th percentile is also referred to as Q0.95, the 95% quantile.
For a distribution, the quantile Qα is such for F(Qα) = α.  In other words, Qα = F-1(α).
For example, Q0.95 for a Standard Normal Distribution is 1.645, since Φ[1.645] = 0.95.
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287 The key idea here is that the Gamma is some distribution different than the Normal Distribution.
288 Since this Normal Distribution has the same mean and variance as the data, we would expect it to be a good 
match to the data, provided the data were drawn from a Normal Distribution.



In order to see whether data is drawn from some member of a Distribution Family, 
which has a scale and/or location parameter, we can create a Q-Q Plot for a standard member 
of that family F.  

� 

• Grade the n data points from smallest to largest.

� 

• For i = 1 to n, plot the points: (F-1[ i
n+1

)], x(i)).

If the data is drawn from the given distribution family, then we expect the plotted points to lie 
close to some straight line.

Take the following 24 data point arranged from smallest to largest: 
565, 678, 681, 713, 769, 809, 883, 890, 906, 909, 946, 956, 961, 983, 1046, 1073, 1103, 1171, 
1198, 1269, 1286, 1296, 1316, 1643.  
For the Standard Normal, Q1/25 = Q0.04 = -1.751.  
Thus the first plotted point in a Normal Q-Q Plot is: (-1.751, 565).

Exercise: What is the second plotted point?
[Solution: Q2/25 = Q0.08 = -1.405.  Thus the second plotted point is: (-1.405, 678).]

Here is the resulting Normal Q-Q Plot:

! -1 . 5 -1 . 0 -0 . 5 0.5 1.0 1.5
Normal Quantiles
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Other than the final point, the plotted points seem approximately linear, and thus this data could 
very well be from a single Normal Distribution.289 

One could standardize each data point prior to constructing the Q-Q plot.
The data has a sample mean of 1002.08, and a sample variance of 63,387.9.
Thus we would subtract 1002.08 from each data point and divide by 63,387.9 .

For example, (565 - 1002.08) / 63,387.9  = -1.736.

Here is the Q-Q Plot, using the standardized data, including the comparison line x = y:290 

        

-1 1 2
Normal Quantiles

-1

1

2

SampleQuantiles

Again, other than the final point, the plotted points are close to the 45 degree comparison line, 
and thus this data could very well be from a single Normal Distribution.
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289 With small data sets it is hard to draw a definitive conclusion. 
There is no specific numerical test we would apply to the Q-Q plot.
290 Having standardized the data, when we compare to the Standard Normal Distribution, we expect the plotted 
points to be close to the 45 degree comparison line x = y.



Form of the Deviance Residual:291  

The form of the deviance residual depends on the distribution and thus the form of the unscaled 
deviance. 

Distribution Square of the Deviance Residual

Normal  1
σ2

 (yi - µ̂i )2
i=1

n
∑

Poisson  2 {yi ln[yi / λ̂i ]
i=1

n
∑  - (yi - λ̂i ) }

Binomial  2 {yi ln[ yi
ŷi

]
i=1

n
∑  + (mi - yi) ln[ mi - yi

m i - ŷi
] }

Gamma  2 α {-ln[yi / ŷi ]
i=1

n
∑  + (yi - ŷi) / ŷi  }

Inverse Gaussian  θ (yi -  ŷi)2

 ŷi2  yii=1

n
∑

Negative Binomial  2 {yi ln[yi / ŷi ]
i=1

n
∑  - (yi + r) ln[ yi + r

ŷi  + r
] }

Exercise: For a GLM using a Gamma Distribution, the first observed value is 800 with 
corresponding fitted value of 853.20. The maximum likelihood fitted parameter α = 45.6
What is the corresponding deviance residual?
[Solution: d12 = (2)(45.6) {-ln[800/853.20] + (800 - 853.20)/853.20} = 0.1850.
Since 800 - 853.20 is negative, we take the deviance residual as negative.
d1 = - 0.1850  = -0.430.
Comment: This is for the two-dimensional example I discussed previously, 
using a reciprocal link function.]
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Communicable Disease Example Continued:

For the Poisson Distribution, the unscaled deviance is:

D = 2 {yi ln[yi / λ̂i ]
i=1

n
∑  - (yi - λ̂i ) } .

Then the square of the deviance residual is the corresponding term in the above sum:
di2 = 2 {yi ln[yi / λ̂ i ] - (yi - λ̂ i )}.

For example, for the Communicable Disease Example which uses a Poisson Distribution, the 
first observed count is 8 with corresponding fitted value 6.3632.
Thus d12 = 2 {8 ln[8 /  6.3632] - (8 -  6.3632)} = 0.3889.

Since the first ordinary residual is positive, d1 = 0.3889  = 0.6236.

Exercise: For this example, the third observed count is 10 with corresponding fitted value 
10.263.
Determine the corresponding deviance residual.
[Solution: d32 = 2 {10 ln[10 / 10.263] - (10 - 10.263)} = 0.006798.
Since 10 - 10.263 < 0, we take the deviance residual as negative.
d3 = - 0.006798  = -0.0824.]

For this example, the deviance residuals are: 0.6237, -0.2081, -0.0824, -0.1869, 0.3254, 0.8099, 
-0.4876, -0.1845, 0.1094, -0.5728, 0.2390, 0.2289, -1.2763, -0.3058, -0.4288, 0.2090,  0.1448, 
0.1061, 0.7144, 0.0819.
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Here is a graph of the deviance residuals versus the fitted values: 
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y- hat
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deviance residual

Here is a graph of the deviance residuals versus month: 

!
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month

- 1.0

- 0.5

0.5

deviance residual

In neither case do I observe an obvious pattern.
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Here is a Normal Q-Q plot of the deviance residuals:

!

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5
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Other than the first point, the points seem to be approximately along a straight line, thus this 
data could be from a Normal. However, there is too little data to make a definite conclusion.292 
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292 It turns out the standardized residuals do not seem to follow a Standard Normal. It turns out that for a Gamma 
Distribution rather than a Poisson Distribution, the standardized residuals seem to follow a Standard Normal. Thus 
a Gamma Distribution seems to be a better model for this data.



Working Residuals:293

Working residuals are another useful type of residual, which can be used to analyze the 
appropriateness of a fitted GLM.294 295

The form of the deviance residuals depends on the distributional form used in the model. 
The form of the working residuals instead depends on the link function used in the model. 

Working Residual is: 
! ! ! ! wri = (yi - μi) g’(μi).

Recall that the partial residual was defined as: ri = (ordinary residual) gʼ(µ i) + xij βj.
Thus the partial residual is the working residual with effect of the jth predictor removed.

Exercise: What is the form of the working residual for the identity link function?
[Solution: g(µ) = µ. ⇒ g’(µ) = 1. ⇒ wri = yi - µi = ordinary residual.

Comment: Thus the working residuals can be thought of as a generalization of the ordinary 
residuals used for example in linear regression.]

Exercise: What is the form of the working residual for the log link function?
[Solution: g(µ) = ln(µ). ⇒ g’(µ) = 1/µ. ⇒ wri = (yi - µi)/µi.]

Exercise: What is the form of the working residual for the logit link function?

[Solution: g(µ) = ln( µ
1 - µ

). ⇒ g’(µ) = 1
µ

1 - µ
⎛
⎝⎜

⎞
⎠⎟

 (1 - µ) - (µ)(-1)
(1 - µ)2

 = 1
µ (1 - µ)

. ⇒ wri =  
yi - µi

µi (1 - µi)
.]

Link Function Working Residual

Identity yi - µi

Log (yi - µ i)/µi

Logit                 yi - µi
µi (1 - µi)
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293 See Section 6.3.2 of Generalized Linear Models for Insurance Rating.
294 Working residuals are available in the statistical language R, as well as the computer language Mathematica.
295 “Most implementations of GLM fit the model using the Iteratively Reweighted Least Squares (IRLS) algorithm, 
the details of which are beyond the scope of this monograph. Working residuals are quantities that are used by the 
IRLS algorithm during the fitting process.”



Exercise: A GLM has been fit. The fifth response is 0.8, and the corresponding prediction is 0.6.
Determine the fifth working residual for each of the following cases:
Identity Link Function, Log Link Function, and Logit Link Function.
[Solution: For the Identity Link Function: 0.8 - 0.6 = 0.2.
For the Log Link Function: (0.8 - 0.6)/0.6 = 0.333.
For the Logit Link Function: (0.8 - 0.6)/ {(0.6)(0.4)} = 0.833.]

As has been discussed, graphing residuals is useful. However, most insurance models have 
thousands or even millions of observations, making such graphs much less useful.296

Therefore, it can very useful to bin the working residuals. 
One groups together similar values on the x-axis (of the intended plot), and then takes a 
weighted average of the corresponding working residuals.297 “Binning the residuals aggregates 
away the volume and skewness of individual residuals, and allows us to focus on the signal.”

In order to take this weighted average of working residuals within each bin, 
one uses working weights:

! ! ! ! ! wwi = ω i
V(µi) g'(µi)2

.

The working weight depends on the weights assigned in the model to each observation as well 
as the link function and the distributional form. Here is the form for some examples:298 299

!

For the Normal with an identity link function, in other words linear regression, V(µ) = 1 and 
g(µ) = µ.  Therefore, in this case, the working weight is just ω, the (ordinary) weight.
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296 Also the quantity being modeled is usually highly skewed, adding to the difficulty of interpreting a graph of 
residuals,
297 “The advantage of working residuals is that they can be aggregated in a way that preserves the common 
properties of residuals – that is, they are unbiased (i.e., have no predictable pattern in the mean) and 
homoscedastic (i.e.,have no pattern in the variance) for a well-fit model.”
See the Appendix of Generalized Linear Models for Insurance Rating.
298 Taken from the footnote at page 71 of Generalized Linear Models for Insurance Rating.
What is shown for the Binomial is actually for the Bernoulli special case.
299 Personally, I would not memorize these forms of working weights.



Exercise: A GLM has been fit. The sixth observation was given a weight of 10.
The sixth response is 0.5, and the corresponding prediction is 0.7.
Determine the sixth working weight for each of the following cases: Poison with log link, 
Gamma with log link, Tweedie with p = 1.4 and log link, and Bernoulli with logit link.
[Solution: Poison with log link: (10)(0.7) = 7.! Gamma with log link: 10,
Tweedie with p = 1.4 and log link: (10) (0.70.6) = 8.07.
Bernoulli with logit link: (10)(0.7)(0.3) = 2.1.]

Exercise: An actuary has fit a severity GLM using an Inverse Gaussian Distribution with log link 
function.  Number of claims were used as the weights.
The actuary is creating a plot of working residuals in order to assess the model fit.
The following eight observations will be binned together.
Compute the binned working residual for this bin.

Observed Predicted Number of Claims

334 444 6

412 383 3

560 487 11

621 642 5

448 370 8

509 581 4

380 426 7

495 411 9

[Solution: working residual: wri = (yi - μi) g’(μi).
For the log link function: g(µ) = ln(µ). ⇒ g’(µ) = 1/µ. ⇒ wri = (yi - µ i)/µ i.

working weights: wwi = ω i
V(µi) g'(µi)2

.

For the Inverse Gaussian Distribution: V(µ) = µ3. ⇒ wwi = ωi / μi.

wri wwi = ωi (yi - µ i) / μi2.
The numerator of the weighted average is the sum of the product of the working residuals and 
working weights: (6)(334 - 444)/4442 + (3)(412 - 383)/3832 + (11)(560 - 487)/4872 
! + (5)(621 - 642)/6422 + (8)(448 - 370)/3702 + (4)(509 - 581)/5812 + (7)(380 - 426)/4262 
! + (9)(495 - 411)/4112 = 0.006782.
The denominator of the weighted average is the sum of the working weights: 
6/444 + 3/383 + 11/487 + 5/642 + 8/370 + 4/581 + 7/426 + 9/411 = 0.1186.
The binned working residual is: 0.006782/0.1186 = 0.0572.]
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It can be useful to plot working residuals versus: the Linear Predictor, Values of a Predictor 
Variable, or the Weight Variable. Ideally we should detect no pattern in these residual plots. 
Any such pattern may reveal flaws in the GLM.

Plotting the working residuals versus the value of the linear predictor, xβ, may reveal places 
where the model is systematically underpredicting or overpredicting.
Here are two examples of such plots:300 301

In the left-hand plot, the points form an uninformative cloud with no apparent pattern, as they 
should for a well-fit model. In contrast, the right-hand plot displays a pattern. The dots near the 
middle tend to be higher, while those on either side tend to be lower. The model has a tendency 
to underpredict in the middle region, and to overpredict on either side.302 303 Thus this model is 
not so good.
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300 See Figure 18 in Generalized Linear Models for Insurance Rating.
301 The plotted points each represent the result of grouping observations with similar values of the linear predictor, 
and then taking a weighted average of their working residuals. 
302 The residual is positive when the observed is larger than the predicted; thus a positive residual corresponds to 
an underprediction.
303 The cause may be made clearer with plots of residuals over the various predictors.



Plots of working residuals over each of the various predictors in the model are also useful.
Here are two examples of such plots:304 305

“The left-hand plot clearly reveals that Variable X has a non-linear relationship with the target 
variable that is not being adequately addressed. The right-hand shows the plot that results after 
this issue had been fixed with a hinge function.”
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304 See Figure 19 in Generalized Linear Models for Insurance Rating.
305 The plotted points each represent the result of grouping observations with similar values of Variable X, and then 
taking a weighted average of their working residuals. 



“A plot of residuals over the weight variable used in the model (or over a variable that could 
potentially be a good choice of weight in the model) may reveal information about the 
appropriateness of the model weight (or lack thereof ).” 

Here are two examples of such plots:306 307

The lefthand plot did not use exposure as a weight in the model. The lower-exposure records 
show more variance, and the higher-exposure records show less variance, which violates our 
desire for homoscedasticity.308  

Observations based on larger volume of exposure tend to be more stable. Thus we expect the 
pattern seen in the left-hand plot, when no weights are used. This problem can be fixed by using 
exposure as the weight in the model.

The righthand plot shows the result of adding exposure as the weight in the model; the 
expectation of lower variance with higher exposure has now been incorporated into the GLM. 
In the righthand plot, the working residuals form a homoscedastic cloud; as desired, there is no 
longer any pattern.
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306 See Figure 20 in Generalized Linear Models for Insurance Rating.
307 The plotted points each represent the result of grouping observations with similar values of exposure, and then 
taking a weighted average of their working residuals. 
308 We do not want to see a pattern in the variance.



Assessing Model Stability:309 

The actuary would like the GLM to be stable; in other words, the predictions of the model should 
not be overly sensitive to small changes in the data.

An observation is influential if it has a large effect on the fitted model. An outlier is an 
observation such that the corresponding fitted value is far from the observation. 

An influential observation is such that its removal from the data set causes a significant 
change to our modeled results. An observation is influential when one or more of its predictor 
values are far from its mean and the observation is an outlier. 

A common measure of influence is Cook’s distance.310  The larger the value of Cook’s 
distance, the more influential the observation.311 

The actuary should rerun the model excluding the most influential points to see their impact on 
the results. If this causes large changes in some of the parameter estimates, the actuary should 
consider for example whether to give these influential observations less weight.

Cross-validation, as discussed previously, can also be used to assess the stability of a GLM.
For example, we can divide the data into ten parts. By combining these parts, we can create ten 
different subsets each of which contains 90% of the total data. We then fit the model to each of 
these ten subsets. 

The results of the models fit to these different subsets of the data ideally should be similar. 
The amount by which these results vary is a measure of the stability of the model. 

Bootstrapping via simulation can also be used to assess the stability of a GLM.312  The original 
data is randomly sampled with replacement to create a new set of data of the same size. One 
then fits the GLM to this new set of data. By repeating this procedure many times one can 
estimate the distribution of the parameter estimates of the GLM; we can estimate the mean, 
variance, confidence intervals, etc.  “Many modelers prefer bootstrapped confidence intervals to 
the estimated confidence intervals produced by statistical software in GLM output.”
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309 See Section 6.4 of Generalized Linear Models for Insurance Rating. 
310 The syllabus reading gives no details on how Cook’s Distance is calculated.
Computer software to fit GLMs will usual include Cook’s Distance as one of the possible outputs.
311 Values of Cook’s Distance greater than unity may require further investigation.
312 See An Introduction to Statistical Learning with Applications in R, by James, Witten, Hastie, and Tibshirani, 
not on the syllabus of this exam. 



Scoring Models:313 

We have a rating plan or rating plans. We may not know what model if any that the plan(s) came 
from.314  We wish to evaluate a rating plan or compare two rating plans.

Methods that are discussed: Plots of Actual vs. Predicted, Simple Quantile Plots, 
Double Lift Charts, Loss Ratio Charts, the Gini Index, and ROC Curves.

In order for these techniques to be used, one only needs a database of historical observations 
plus the predictions from each of the competing models. The process of assigning predictions to 
individual records is called scoring.

Assessing Fit with Plots of Actual versus Predicted:315

Create a plot of the actual target variable (on the y-axis) versus the predicted target variable (on 
the x-axis) for each model. If a model fits well, then the actual and predicted target variables 
should follow each other closely. Here are two examples:316

   

Model 2 fits the data better than Model 1, as there is a much closer agreement between the 
actual and predicted target variables for Model 2 than there is for Model 1.

These plots should not use data that was used to fit or train the models. 
It is common to group the data, for example into percentiles. 
Often one will plot the graph on a log scale, as in the above examples.
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313 See Section 7 of Generalized Linear Models for Insurance Rating. 
314 One or more of the rating plans may be proprietary.
315 See Section 7.1 of Generalized Linear Models for Insurance Rating. 
316 See Figure 21 of Generalized Linear Models for Insurance Rating. 



Measuring Model Lift:317 

Lift refers to a model’s ability to prevent adverse selection, measuring the approximate 
“economic value” of the model. Economic value is produced by comparative advantage in 
avoidance of adverse selection; thus model lift is a relative concept, comparing two or more 
competing models, or a model and the current plan. Lift measures a model’s ability to charge 
each insured an actuarially fair rate, thereby minimizing the potential for adverse selection. 
Model lift should always be measured on holdout data, in other words not using data used to fit 
or build the model.

Simple Quantile Plots:318

To create a quantile plot of a model.
1. Sort the dataset based on the model predicted loss cost from smallest to largest.319

2. Group the data into quantiles with equal volumes of exposures.320  
3. Within each group, calculate the average predicted pure premium based on the model,
! and the average actual pure premium.
4. Plot for each group, the actual pure premium and the predicted pure premium.

One can create separate quantile plots for two models, for example the current rating plan and 
a proposed rating plan and compare them:321 
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317 See Section 7.2 of Generalized Linear Models for Insurance Rating   Lift differs from goodness of fit measures.
318 See Section 7.2.1 of Generalized Linear Models for Insurance Rating. 
319 The plots shown seem to be sorted on predicted pure premiums (losses per exposure) 
The syllabus reading says “loss costs”, which can mean pure premiums.
320 For example: quintiles (5 buckets), deciles (10 buckets), or vigintiles (20 buckets).
321 See Figure 22 in Generalized Linear Models for Insurance Rating. 



To compare the models use the following 3 criteria:
1. Predictive accuracy. 
2. Monotonicity. The actual pure premium should increase.322 
3. Vertical distance between the actuals in the first and last quantiles. 

“A large difference (also called “lift”) between the actual pure premium in the quantiles with the 
smallest and largest predicted loss costs indicates that the model is able to maximally 
distinguish the best and worst risks.”

The previous set of graphs can be used to compare the current and proposed model.

   

1. Predictive accuracy: the proposed model does a better job of predicting.
2. Monotonicity: the current plan has a reversal in the 6th decile, whereas the proposed model
does better with no significant reversals.
3. Vertical distance between the first and last quantiles: The spread of actual loss costs
for the current plan is 0.55 to 1.30. The spread of the proposed model is 0.40 to 1.60, which is 
larger and thus better.

Thus, by all three criteria, the proposed plan outperforms the current one.
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Exercise: An insurer uses a GLM for classification ratemaking. 
You are given the following data on five insureds.

Insured Actual Loss Cost Loss Cost Predicted by the Model Exposures

1 $45,000 $39,000 80

2 $56,000 $62,000 140

3 $72,000 $75,000 160

4 $86,000 $79,000 190

5 $98,000 $113,000 250
Construct a Simple Quantile Plot; sort the data based on predicted pure premium. 
[Solution: The order of predicted pure premiums is: 4, 2, 5, 3, 1.

Insured Actual
Loss Cost

Actual
Pure Premium

Model
Loss Cost

Model
Pure Premium Exposures

1 $45,000 $563 $39,000 $488 80

2 $56,000 $400 $62,000 $443 140

3 $72,000 $450 $75,000 $469 160

4 $86,000 $453 $79,000 $416 190

5 $98,000 $392 $113,000 $452 250
The corresponding predicted pure premiums are: 416, 443, 452, 469, 488.
The corresponding actual pure premiums are: 453, 400, 392, 450, 563.
The Simple Quantile Plot, with the actual pure premiums shown as A and the predicted pure 
premiums shown as dots:

Comment: One would construct a similar Simple Quantile Plot for a proposed model, in order to 
compare that proposed model to the current model.]
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Double Lift Charts:323 

A double lift chart directly compares two models A and B. 

To create a double lift chart:

1. For each observation, calculate Sort Ratio = Model A Predicted Loss Cost
Model B Predicted Loss Cost

.324 

2. Sort the dataset based on the Sort Ratio, from smallest to largest.
3. Group the data.325  
4. For each group, calculate the pure premiums: predicted by Model A, predicted by Model B, 
! ! and actual. Then divide the group average by the overall average.
5. For each group, plot the three relativities calculated in the step 4.

The first group contains those risks which Model A thinks are best relative to Model B, while the 
last group contains those risks which Model B thinks are best relative to Model A. The first and 
last groups contain those risks on which Models A and B disagree the most in percentage terms.

The “winning” model is the one that more closely matches the actual pure premiums. 
Here is an example of a double lift chart, comparing a current and proposed plan:326 

   

The proposed model more accurately predicts actual pure premium by decile than does the 
current rating plan. This is particularly clear when looking at the extreme groups on either end.
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326 See Figure 23 in Generalized Linear Models for Insurance Rating. 



Exercise: An actuary has built two generalized linear models to predict loss costs. 
Output for each model are shown below:

Observation Actual 
Loss Cost

Model A
Loss Cost

Model B
Loss Cost Exposures

1 $41,000 $46,000 $38,000 150

2 $34,000 $28,000 $32,000 180

3 $43,000 $51,000 $47,000 210

4 $61,000 $55,000 $58,000 250

5 $68,000 $64,000 $71,000 300
Construct a double lift chart.
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[Solution: Sort the data based on the ratio: 
(Model A Predicted Pure Premium) / (Model B Predicted Premium).

Obs
Actual
Loss 
Cost

Actual
Pure 

Premium

Model A
Loss 
Cost

Model A
Pure 

Premium

Model B
Loss 
Cost

Model B
Pure 

Premium
Exposures Sort

Ratio

1 $41,000 $273 $46,000 $307 $38,000 $253 150 1.21

2 $34,000 $189 $28,000 $156 $32,000 $178 180 0.88

3 $43,000 $205 $51,000 $243 $47,000 $224 210 1.09

4 $61,000 $244 $55,000 $220 $58,000 $232 250 0.95

5 $68,000 $227 $64,000 $213 $71,000 $237 300 0.90

Tot. $247,000 $227 $244,000 $224 $246,000 $226 1,090
The sort ratios from smallest to largest give the order: 2, 5, 4, 3, 1.
In each case, we divide the individual pure premiums by the total pure premium.
The Actual P.P. relativities are: (189, 227, 244, 205, 273) / 227 = 0.83, 1.00, 1.07, 0.90, 1.20. 
Model A P.P. relativities are: (156, 213, 220, 243, 307) / 224 = 0.70, 0.95, 0.98, 1.08, 1.37.
Model B P.P. relativities are: (178, 237, 232, 224, 253) / 226 = 0.79, 1.05, 1.03, 0.99, 1.12.
The double lift chart, with actual shown as dots, Model A shown as A, and Model B shown as B:

Comment: Model B more closely matches the actual pure premiums. 
One would work with many more than 5 observations; I would not draw any conclusions based 
on such a small amount of data.]
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“As an alternate representation of a double lift chart, one can plot two curves: the percent error 
for the model predictions and the percent error for the current loss costs, where percent error is 

calculated as: Predicted Loss Cost
Actual Loss Cost

 - 1.  In this case, the winning model is the one with the flatter 

line centered at y = 0, indicating that its predictions more closely match actual pure premium.”

Exercise: An actuary has built two generalized linear models to predict losses. 
Output for each model are shown below:

Observation Actual 
Loss Cost

Model A
Loss Cost

Model B
Loss Cost Exposures

1 $41,000 $46,000 $38,000 150

2 $34,000 $28,000 $32,000 180

3 $43,000 $51,000 $47,000 210

4 $61,000 $55,000 $58,000 250

5 $68,000 $64,000 $71,000 300
Construct a double lift chart using the alternative of percent errors.
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[Solution: Sort the data based on the ratio: 
(Model A Predicted Loss Cost) / (Model B Predicted Loss Cost).

Obs Actual 
Loss Cost

Model A
Loss Cost

Model A
Error

Model B
Loss Cost

Model B
Error

Sort
Ratio

1 $41,000 $46,000 12.2% $38,000 -7.3% 1.21

2 $34,000 $28,000 -17.6% $32,000 -5.9% 0.88

3 $43,000 $51,000 18.6% $47,000 9.3% 1.09

4 $61,000 $55,000 -9.8% $58,000 -4.9% 0.95

5 $68,000 $64,000 -5.9% $71,000 4.4% 0.90
The sort ratios from smallest to largest give the order: 2, 5, 4, 3, 1.

Then we compute the percent errors: Predicted Loss Cost
Actual Loss Cost

 - 1.

For example for Model A: 46,000/41,000 - 1 = 12.2%.
The double lift chart, with Model A shown as A, and Model B shown as B:

   
A

A
A

A

A

B

B

B

B

B

1 2 3 4 5
Quintile

-10

10

20
Percent Error

Comment: Model B has the flatter line centered at y = 0, indicating that its predictions more 
closely match the actual pure premium than Model A.] 
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Loss Ratio Charts:327 

A loss ratio chart is similar to a simple quantile chart, except one works with loss ratios (with 
respect to the premiums for the current plan) rather than pure premiums.328 

To create a loss ratio chart:
1. Sort the dataset based on the model prediction, in other words modeled loss ratios.
2. Group the data into quantiles with equal volumes of exposures.
3. Within each group, calculate the actual loss ratio (under the current plan).329

If the proposed model is able to segment the data into lower and higher loss ratio buckets, then 
the proposed model is better than the current model.

Here is an example:330 

   

The proposed model is able to segment the data into lower and higher loss ratio buckets, 
indicating that the proposed model is better than the current model. 

“The advantage of loss ratio charts over quantile plots and double lift charts is that they are 
simple to understand and explain.” 
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330 See Figure 24 in Generalized Linear Models for Insurance Rating. 



Exercise: An insurer uses a GLM for classification ratemaking. The insurer is considering using 
a different GLM instead. You are given the following data on five insureds.

Insured Actual Loss Cost Loss Cost Predicted by
Proposed Model

Earned Premium at
Present Rates

1 13,000 17,000 22,000

2 21,000 19,000 29,000

3 25,000 27,000 38,000

4 37,000 33,000 41,000

5 34,000 31,000 45,000
Construct a Loss Ratio Chart.
[Solution: Sort the data based on the loss ratio predicted by the proposed model.

Insured Actual
Loss Cost

Actual
Loss Ratio

Model
Loss Cost

Model
Loss Ratio

Earned Premium at
Present Rates

1 13,000 59.1% 17,000 77.3% 22,000

2 21,000 72.4% 19,000 65.5% 29,000

3 25,000 65.8% 27,000 71.1% 38,000

4 37,000 90.2% 33,000 80.5% 41,000

5 34,000 75.6% 31,000 68.9% 45,000
For the proposed model, the order of predicted loss ratios is: 2, 5, 3, 1, 4.
The corresponding actual loss ratios are: 72.4%, 75.6%, 65.8%, 59.1%, 90.2%.

Comment: See 8, 11/19, Q.2a.  One would work with many more than 5 observations.]
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Lorenz Curves:331 

The Lorenz Curve is used to define the Gini Index, to be discussed subsequently. 

Assume that the incomes in a country follow a distribution function F(x).332 
Then F(x) is the percentage of people with incomes less than x.

The income earned by such people is: t f(t) dt
0

x

∫  = E[X 

� 

∧  x] - x S(x) = S(t) dt
0

x

∫ . 

The percentage of total income earned by such people is: 

y f(y) dy
0

x

∫
E[X]

 = E[X ∧  x] - x S(x)
E[X]

 .

Define G(x) = 
y f(y) dy

0

x

∫
E[X]

 = E[X ∧  x] - x S(x)
E[X]

 .333 

For example, assume an Exponential Distribution.
Then F(x) = 1 - e-x/θ. 

G(x) = E[X ∧  x] - x S(x)
E[X]

 = θ (1 - e-x/θ ) - x e-x/θ

θ
 = 1 - e-x/θ - (x/θ) e-x/θ.

Let t = F(x) = 1 - e-x/θ.  Therefore, x/θ = -ln(1 - t).334 
Then, G(t) = t - {-ln(1-t)} (1-t) = t + (1-t) ln(1-t).
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333 This is not standard notation. I have just used G to have some notation.
334 This is just the VaR (Value at Risk) formula for the Exponential Distribution.



Then we can graph G as a function of F:

! 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
G(x)

F(x)

This curve is referred to as the Lorenz curve or the concentration curve.

Since F(0) = 0 = G(0) and F(∞) = 1 = G(∞), the Lorenz curve passes through the points (0, 0) 
and (1, 1).  Usually one would also include in the graph the 45° reference line connecting (0, 0) 
and (1, 1), called the line of equality, as shown below:

! 0.2 0.4 0.6 0.8 1.0
% of people

0.2

0.4

0.6

0.8

1.0
% of income

Lorenz Curve
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G(t) = G[F(x))] = 
y f(y) dy

0

x

∫
E[X]

.  

dG
dt

 = dG
dx

 / dF
dx

 = x f(x)
E[X]

 / f(x) = x
E[X]

 > 0.

d2G
dt2

 = 1
E[X]

 dx
dx

 / dF
dx

 = 1
E[X] f(x)

 > 0.

Thus, in the above graph, as well as in general, the Lorenz curve is increasing and concave up.
The Lorenz curve is below the 45° reference line, except at the endpoints when they are equal.

The vertical distance between the Lorenz curve and the 45° comparison line is: F - G.

Thus, this vertical distance is a maximum when: 0 = dF
dF

 - dG
dF

.  

⇒ dG
dF

 = 1. ⇒ x
E[X]

 = 1. ⇒ x = E[X].

Thus the vertical distance between the Lorenz curve and the line of equality is a maximum at 
the mean income.

Exercise: If incomes follow an Exponential Distribution, what is this maximum vertical distance 
between the Lorenz curve and the line of equality?
[Solution: The maximum occurs when x = θ.
F(x) = 1 - e-x/θ.   From previously, G(x) = 1 - e-x/θ - (x/θ) e-x/θ.
F - G = (x/θ) e-x/θ.  At x = θ, this is: e-1 = 0.3679.] 
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Exercise: Determine the form of the Lorenz Curve, if the distribution of incomes follows a Shifted 
Pareto Distribution, with α > 1.335 

[Solution: F(x) = 1 - θ
θ + x

⎛
⎝⎜

⎞
⎠⎟
α

, x > 0.  E[X] = θ
α −1

.  E[X 

� 

∧  x] = θ
α −1

 1 - θ
θ + x

⎛
⎝⎜

⎞
⎠⎟
α − 1⎧

⎨
⎩

⎫
⎬
⎭

.

G(x) = E[X ∧  x] - x S(x)
E[X]

 = 

θ
α-1

 {1 - θ
θ+x

⎛
⎝⎜

⎞
⎠⎟
α-1

} - x S(x)

θ / (α-1)
 = 1 - θ

θ+x
⎛
⎝⎜

⎞
⎠⎟
α-1

 - (α-1) x
θ

 S(x).

Let t = F(x) =  1 - θ
θ + x

⎛
⎝⎜

⎞
⎠⎟
α

. ⇒ θ
θ + x

⎛
⎝⎜

⎞
⎠⎟
α

 = S(x) = 1 - t.  Also, x/θ = (1 - t)-1/α - 1.336 

Therefore, G(t) = 1 - (1 - t)(α-1)/α - (α-1){(1 - t)-1/α - 1} (1 - t) = t + α - tα - α (1-t)1-1/α, 0 ≤ t ≤ 1.
Comment: G(0) = α - α = 0.  G(1) = 1 + α - α  - 0 = 1.] 

Here is graph comparing the Lorenz curves for Shifted Pareto Distributions with α = 2 and α = 5:
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% of income

alpha = 2
alpha = 5
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The Shifted Pareto with α = 2 has a heavier righthand tail than the Shifted Pareto with α = 5.  
If incomes follow a Shifted Pareto with α = 2, then there are more extremely high incomes 
compared to the mean, than if incomes follow a Shifted Pareto with α = 5.  In other words, 
if α = 2, then income is more concentrated in the high income individuals than if α = 5.337 

The Lorenz curve for α = 2 is below that for α = 5.  In general, the lower curve corresponds to a 
higher concentration of income. In other words, a higher concentration of income corresponds to 
a smaller area under the Lorenz curve. Equivalently, a higher concentration of income 
corresponds to a larger area between the Lorenz curve and the 45° reference line.

Here is a Lorenz Curve for United States 2014 Household Income:338 

!

The Gini index is calculated as twice the area between the Lorenz curve and the line of equality. 
In this case, the Gini index is 48.0%.
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338 See Figure 25 of Generalized Linear Models for Insurance Rating.



The Gini Index depends on the type of distribution and its (shape) parameters. Assume for 
example that household incomes follow a Shifted Pareto Distribution. Then for α > 1, it turns out 

that the Gini Index = 1
2α - 1

.  As alpha approaches one, the Gini Index approaches one.

It turns out, that for the Shifted Pareto, the portion of total income earned by the top p percent is 

as a function of the Gini Index γ: 1
2

(1 + 1/γ ) p
1-γ
1+γ  + p (1 - 1/γ )/2 .

Exercise: If income follows a Shifted Pareto, for a Gini Index of 0.4, what percent of total income 
is earned by the top one percent?
[Solution: (1/2)(1 + 1/0.4) 0.010.6/1.4 + (0.01)(1 - 1/0.4)/2 = 23.6%. 
Comment: α = (1 + 1/0.4)/2 = 1.75.]

For the Shifted Pareto, here is a graph of the portion of total income earned by the top 1% as a 
function of the Gini Index:339

This may help to give you some intuition as the meaning of different values of the Gini Index.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 360
  

339 Gini indexes for countries range from about 0.25 to about 0.60.



Gini Index:340 

The Gini Index comes up for example in economics, when looking at the distribution of incomes. 
A subsequent section will discuss how the Gini index can be used to evaluate a rating plan. 

The Gini index is a measure of inequality. For example if all of the individuals in a group have 
the same income, then the Gini index is zero. As incomes of the individuals in a group became 
more and more unequal, the Gini index would increase towards a value of 1.  The Gini index has 
found application in many different fields of study.

As discussed, for incomes, the Lorenz curve would graph percent of people versus percent of 
income. This correspondence between areas on the graph of the Lorenz curve the concentration 
of income is the idea behind the Gini index. Let us label the areas in the graph of a Lorenz 
Curve:

! 0.2 0.4 0.6 0.8 1.0
% of people

0.2

0.4

0.6

0.8

1.0
% of income

A

B

Gini Index = Area A
Area A + Area B

.

However, Area A + Area B add up to a triangle with area 1/2.

Therefore, Gini Index = Area A
Area A + Area B

 = 2A 

! ! = twice the area between the Lorenz Curve and the line of equality = 1 - 2B.
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Also called the Gini Coefficient or coefficient of concentration.



Gini Index for Specific Distributions:341 

For the Exponential Distribution, the Lorenz curve was: G(t) = t + (1-t) ln(1-t).

Thus, Area B = area under Lorenz curve = t + (1-t) ln(1-t)
0

1

∫  dt  = 1/2 + s ln(s)
0

1

∫  ds .

Applying integration by parts, 

s ln(s)
0

1

∫  ds = (s2/2) ln(s)]
s=0

s=1
 - (s2/2) (1/s)

0

1

∫  ds  = 0 - 1/4 = -1/4.

Thus Area B = 1/2 - 1/4 = 1/4.

Therefore, for the Exponential Distribution, the Gini Index is: 1 - (2)(1/4) = 1/2.

For the Uniform Distribution, the Gini Index is: 1/3.

For the Shifted Pareto Distribution, the Gini Index is: 1 / (2α - 1), α > 1.

We note that the Uniform with the lightest righthand tail of the three has the smallest Gini index, 
while the Shifted Pareto with the heaviest righthand tail of the three has the largest Gini index. 
Among Shifted Pareto Distributions, the smaller alpha, the heavier the righthand tail, and the 
larger the Gini index.342 

The more concentrated the income is among the higher earners, the larger the Gini index.

For the Classical (Single Parameter) Pareto Distribution, the Gini Index is: 1 / (2α - 1), α > 1.

For the LogNormal Distribution, the Gini Index is: 2Φ[σ/ 2 ] - 1.

For the Gamma Distribution, the Gini Index is: 1 - 2 β(α+1, α; 1/2).
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Gini Index and Rating Plans:343 

The Gini index can also be used to measure the lift of an insurance rating plan by quantifying its 
ability to segment the population into the best and worst risks. Assume we have a rating plan. 
Ideally we would want the model to identify those insureds with higher expected pure premiums.

The Lorenz curve for the rating plan is determined as follows:
1. Sort the dataset based on the model predicted loss cost.344  
2. On the x-axis, plot the cumulative percentage of exposures.
3. On the y-axis, plot the cumulative percentage of actual losses.
Draw a 45-degree line connecting (0, 0) and (1, 1), called the line of equality.

Here is an example:345

!

This model identified 60% of exposures which contribute only 20% of the total losses. The Gini 
index is twice the area between the Lorenz curve and the line of equality, in this case 
56.1%.  The higher the Gini index, the better the model is at identifying risk differences.346 
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343 See Section 7.2.4 of Generalized Linear Models for Insurance Rating
344 This should be done on a dataset not used to develop the rating plan.
345 See Figure 25 of Generalized Linear Models for Insurance Rating.
346 “Note that a Gini index does not quantify the profitability of a particular rating plan, but it does quantify the ability 
of the rating plan to differentiate the best and worst risks. Assuming that an insurer has pricing and/or underwriting 
flexibility, this will lead to increased profitability.”



An Example of the Gini Index and an Insurance Rating Plan:347 

We have four classes each with an equal number of exposures, and the result of fitting a 
GLM.348 
We have already sorted the classes according to the pure premiums predicted by the GLM.349 

Class Predicted Pure Premium

1 100

2 200

3 300

4 400

Ignoring here any misestimating of the overall rate level, the observed pure premiums would 
differ from the predicted pure premiums for two reasons: 350 351 
1. Imperfection of the GLM, in other words modeling error.
2. Random fluctuation, in other words process variance.352 

Let us assume the following Actual Pure Premiums:353 354

Class Actual P.P. Cumulative Losses % of Losses % Expos

1 160 160 16% 25%

2 240 400 40% 50%

3 260 660 66% 75%

4 340 1000 100% 100%

Thus for the Lorenz curve we plot the points: (0, 0), (25, 16), (50, 40), (75, 66), (100, 100).
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347 See 8, 11/16, Q.5.
348 I have chosen a one-dimensional example with only four levels solely for illustrative simplicity. Most GLMs would 
include more than one risk characteristic, and some characteristics would have more than four levels.
Also the exposures for each level would usually not all be equal.
349 In a practical application we would have hundreds if not thousands of different cells consisting of risks with all of 
the same characteristics and thus the same predicted pure premium.
350 We are using the GLM to predict class relativities rather than the overall rate level.
In some cases, the GLM output will automatically balance to the observed.
351 Each class is not perfectly homogenous; it may be possible to refine the given classes to produce more 
homogeneous classes. Of course, if the classes are made too small, we would have issues with credibility.
352 The more data in a class, the less subject to random fluctuation would be the average observed pure premium 
for that class.
353 These observed pure premiums are from a dataset similar to the one to which the GLM was fit.
354 Assuming solely for simplicity one exposure per class.
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It is possible to calculate the area between the above Lorenz Curve and the Line of Equality,
by dividing the area in triangles.355 356  This area turns out to be 0.07.357 
Thus the Gini Index is twice that or 14%.358 
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356 The six triangles I used were: {(0,0), (25,16), (25,25)}, {{25,16}, {25,25}, {50,40)}, 
One can calculate the area of a triangle from the length of the sides via Heron’s formula, not on the syllabus.
357 Remembering that for example the value shown as 25 is actually 25% = 0.25.
358 The higher the Gini index, the better the model is at identifying risk differences.
A more complicated model is likely to do better than this very simple class plan.



Solely for illustrative purposes, let us investigate the Gini Index if instead the actual pure 
premiums exactly matched the predicted pure premiums for each class.359 360

Class Actual P.P. Cumulative Losses % of Losses % Expos

1 100 100 10% 25%

2 200 300 30% 50%

3 300 600 60% 75%

4 400 1000 100% 100%

Thus for the Lorenz curve we plot the points: (0, 0), (25, 10), (50, 30), (75, 60), (100, 100).
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The area between the above Lorenz Curve and the Line of Equality, turns out to be 0.125. 
Thus the Gini Index is twice that or 25%, higher than previously.
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359 While this is will not occur in practice, this is the best possible result for this simple plan with only four classes.
360 Assuming solely for simplicity one exposure per class.



Understanding & Validating a Model:361 

Model Lift
How well does the model differentiate between best and worst risks?
Does the model help prevent adverse selection?
Is the model better than the current rating plan?

Simple Quantile plots:
Illustrate how well the model helps prevent adverse selection.
Double lift charts:
Compare competing models or compare new model against current rating plan.
Gini Index:
Summarizes model lift into one number.
Loss ratio charts:
Puts lift in a context most people in the insurance industry can understand.

Goodness of Fit
What kind of model statistics are available, and how do you interpret them?
What kind of residual plots should you consider, and how do you interpret them?
What are some considerations regarding actual versus predicted plots?

Internal Stability
How well does the model perform on other data?
How will the model perform over time?
How reliable are the model’s parameter estimates? 
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361 “And The Winner Is…? How to Pick a Better Model,” 2015 CAS RPM Seminar, by Hernan L. Medina.



ROC Curves:362 

Receiver Operating Characteristic (ROC) Curves can be used to compare models that use 
the Bernoulli or Binomial Distribution.363 

The first step is to pick a threshold. For example, if the discrimination threshold were 8%, then 
we look at all cells with the fitted probability of an event > 8%, in other words q̂i  > 8%.364  Then 
we count up the number of times there was an event when an event was predicted. For 
example, there might be 3740 such true positives. Assume that there 4625 total events. Then 
the “sensitivity” is the ratio: 3740/4625 = 0.81.

In general, above a given threshold, the sensitivity is the portion of the time that an event 
was predicted by the model out of all the times there is an event = 

true positives
total times there is an event

.  Sensitivity is the rate of true positives.365

All other things being equal, higher sensitivity is good.

Then we look at all cells with the fitted probability of an event ≤ 8%, in other words q̂i  ≤ 8%.  
For example, there might be 54,196 such policies without an event. Assume there are a total of 
63,232 policies without an event. Then the “specificity” is the ratio: 54,196/63,232 = 0.85.

Below a given threshold, the specificity is the portion of the time that an event was not 
predicted by the model out of all of the times these is not an event = 

true negatives
total times there is not an event

. 366  All other things being equal, higher specificity is good.

Specificity is the rate of true negatives.  The rate of false positives is: 1 - specificity.

For this example, for a threshold of 8%, we can display the information in a 
confusion matrix:367 

Discrimination Threshold: 8%Discrimination Threshold: 8%Discrimination Threshold: 8%Discrimination Threshold: 8%
PredictedPredicted

Actual Event No Event Total
Event 3740 884 4625

No Event 9036 54,196 63,232
Total 12,776 55,080 67,856
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362 See Section 7.3.1 in Generalized Linear Models for Insurance Rating. 
363 ROC analysis was originally developed during World War II for the analysis of radar images.
364 The event could be a claim, a policy renewal, etc.
365 If one has a model to predict the probability of a claim being fraudulent, then for a given threshold:
Sensitivity = (correct predictions of fraud) / (total number of fraudulent claims).
366 If one has a model to predict the probability of a claim being fraudulent, then for a given threshold:
Specificity = (correct predictions of no fraud) / (total number of non-fraudulent claims).
367 See Table 13 in Generalized Linear Models for Insurance Rating. 



For a certain threshold, the general form of a confusion matrix:

PredictedPredicted
Actual Event No Event
Event true positive false negative

No Event false positive true negative

A confusion matrix is similar to a table from hypothesis testing, 
where the null hypothesis is no event:368  

Decision Reject H0 Do not reject H0
H1 is True Correct Type II Error 
H0 is True Type I Error Correct 

The false negatives are analogous to making a Type II Error.
The false positives are analogous to making a Type I Error.

PredictedPredicted
Actual Event No Event Total
Event 3740 884 4625

No Event 9036 54,196 63,232
Total 12,776 55,080 67,856

For the 8% threshold, the specificity was: true negatives
total times there is not an event

 = 54,196
63,232

 = 85%. 

1 - specificity = false positives
total times there is not an event

 = 9036
63,232

 = 15%. 

1 - specificity is analogous to: 
! chance of making a Type Error I = significance level of a statistical test.

For the 8% threshold, the sensitivity was: true positives
total times there is an event

 = 3740
4625

 = 81%.

Sensitivity is analogous to: 1 - chance of making a Type Error II = power of a statistical test.

In the ROC Curve we plot the point: (1 - 0.85, 0.81) = (0.15, 0.81). 

In general, the ROC curve consists of plotting for various thresholds: 
(1 - specificity , sensitivity). 
In addition, there is a 45% comparison line, the line of equality, from (0, 0) to (1, 1).
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368 While the analogy to hypothesis testing may help your understanding, it should not be tested on your exam.



Here is an example of an ROC curve, 
similar to Figure 26 in Generalized Linear Models for Insurance Rating:369

!

Sensitivity = true positive rate.  1 - specificity = false positive rate.

A perfect model would be at (0, 1) in the upper lefthand corner; sensitivity = 1 and specificity = 1.
The closer the model curve gets to the upper lefthand corner the better.

The comparison line (line of equality) indicates a model with sensitivity = 1 - specificity, which 
can be achieved by just flipping a coin to decide your prediction. Thus such models have no 
predictive value. The closer the model curve gets to the 45 degree comparison line (line of 
equality), the worse the model.

The comparison line has area 1/2 below it. The larger the area under the model curve, the better 
it is. The area under the above ROC curve is 0.95.

AUROC is the area under the ROC curve; the larger AUROC the better the model.370  
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369 Figure 4.8 in An Introduction to Statistical Learning with Applications in R, by James, Witten, Hastie, & Tibshirani,
not on the syllabus of this exam.
370 The AUROC is equal to: (0.5) (normalized Gini) + 0.5, where the normalized Gini is the ratio of the model’s Gini 
index to the Gini index of the hypothetical “perfect” model (where each record’s prediction equals its actual
value). Note that the prefect model will not have a Gini index of one; it’s Gini index depends on the homogeneity of 
the risks and the randomness of the loss process.



For a fraud example, the confusion matrix for a discrimination threshold of 50%:371

!

Exercise: For a discrimination threshold of 50%, determine the sensitivity and specificity.
[Solution: Sensitivity = 39/109 = 35.8%.  Specificity = 673/704 = 95.6%.
Comment: In the ROC Curve we plot the point: (1 - 0.956, 0.358) = (0.044, 0.358). ]

For this fraud example, the confusion matrix for instead a discrimination threshold of 25%:372

!

Exercise: For a discrimination threshold of 25%, determine the sensitivity and specificity.
[Solution: Sensitivity = 75/109 = 68.8%.  Specificity = 601/704 = 85.4%.
Comment: In the ROC Curve we plot the point: (1 - 0.854, 0.688) = (0.146, 0.688).
Lowering the threshold increased the sensitivity but decreased the specificity.]
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371 See the top of Table 13 in Generalized Linear Models for Insurance Rating.
372 See the bottom of Table 13 in Generalized Linear Models for Insurance Rating.



For this example of modeling fraud on claims, one gets the following ROC Curve:373

! !

This ROC has an area under ROC (AUROC) of 0.857.374

We can see how as one changes the threshold from 0.5 to 0.25, the sensitivity increases, but at 
the cost a lower specificity. In other words, the rate of true positives increases at the cost of also 
increasing the rate of false positives.

The selection of the discrimination threshold involves a trade-off: a lower threshold will 
result in more true positives and fewer false negatives than a higher threshold, but at the 
cost of more false positives and fewer true negatives. 

For example, let us assume an actuary has developed a GLM to predict fraudulent claims.
The larger the average severity, the more worthwhile it is for the insurer to spend money to 
investigate cases of possible fraud. If claims are more severe, then the insurer will be more 
concerned about false negatives (cases where there is fraud but the modeled probability of 
fraud is below the threshold), than it would be about false positives (cases where there is not 
fraud but the modeled probability of fraud is above the threshold). Therefore, the more severe 
the claims, the lower the threshold that should be selected.
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373 See Figure 26 in Generalized Linear Models for Insurance Rating. 
374 The perfect model would have an AUROC of 1.



In general, the choice of an appropriate discrimination threshold involves some judgement and 
depends on the practical application.375

From a paper on detecting insurance fraud, two ROC curves for logistic models:376

The curve on the left has an AUROC of 0.677, while the curve on the right has an AUOC of 
0.612.377  Thus we prefer the model on the left.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 373
  

375 “Determination of the optimal threshold is typically a business decision that is out of the scope of the modeling 
phase.”
376 “Distinguishing the Forest from the TREES: A Comparison of Tree-Based Data Mining Methods,”
by Richard A. Derrig and Louise Francis, Variance, Volume 2 Issue 2.
377 The areas between the curves and the 45 degree line are 0.177 and 0.112.



A Medical Example of ROC:378 

Let us assume we have a medical test for a disease which results in a numerical score. 
The lower the score on this test the more likely that the individual has this disease.379  
Assume the following data:

Score on Medical Test Number with Disease Number without Disease

5 or less 18 1
5.1 to 7 7 17
7.1 to 9 4 36

9 or more 3 39

Total 32 93

We can pick a threshold to use with this test; if the test score is less than or equal to the chosen 
threshold this indicates that the individual has the disease. 

For example, assume a threshold of 5. Then 18 individuals are correctly identified as diseased, 
and 1 is incorrectly identified as diseased. There are 18 true positives. There is one false 
positive. 14 individuals who are diseased are incorrectly identified as being without disease. 
There are 14 false negatives. 92 individuals who are not diseased are correctly identified as 
being without disease.

We can think of sensitivity as the rate of true positives of a medical test for a disease as a 
portion of positives. The rate of true positives out of all diseased is: 18/32 = 0.56.380 

We can think of specificity as the rate of individuals that the test indicates do not have the 
disease out of those without the disease. The rate of negatives out of those without the disease: 
92/93 = 0.99.  One minus the specificity, 1%, is the rate of false positives out of those without 
the disease.381  

The confusion matrix is:
Discrimination Threshold: 5Discrimination Threshold: 5Discrimination Threshold: 5Discrimination Threshold: 5

PredictedPredicted
ActualDisease No Disease Total

Disease 18 1 19
No Disease 14 92 106

Total 32 93 125
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378 http://gim.unmc.edu/dxtests/ROC1.htm
379 While a low test score indicates the presence of the disease in this example,  it could have been the reverse.
380 Sensitivity is analogous to the probability of rejecting the null hypothesis (healthy) when it is false, which is the 
power of the test.
381 One minus specificity is analogous to the probability of rejecting the null hypothesis (healthy) when it is true, 
which is the significance level of the test.



Exercise: What are the sensitivity and specificity if one instead uses a threshold of 7?
[Solution: 25 people have positive tests out of 32 with the disease. 

� 

⇒ sensitivity is: 25/32 = 0.78.
75 people have negative tests out of 93 who are healthy. 

� 

⇒ specificity is: 75/93 = 0.81.
Comment: With a higher threshold the sensitivity is higher but the specificity is lower.
There is a tradeoff between a high sensitivity and a high specificity.]

Exercise: What are the sensitivity and specificity if one instead uses a threshold of 9?
[Solution: 29 people have positive tests, out of 32 with the disease. 

� 

⇒ sensitivity is: 29/32 = 0.91.
39 people have negative tests out of 93 who are healthy. 

� 

⇒ specificity is: 39/93 = 0.42.]

Threshold Sensitivity Specificity 1 - Specificity

5 0.56 0.99 0.01
7 0.78 0.81 0.19
9 0.91 0.42 0.58

The corresponding ROC curve, where I have not connected the dots:382 

! 0.2 0.4 0.6 0.8 1.0
1 - specificity

0.2

0.4

0.6

0.8

1.0
sensitivity
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382 The area under the curve measures discrimination, that is, the ability of the test to correctly classify those with 
and without the disease.



Model Documentation:383 384

Documenting your work as you go along is useful and important, when developing GLMs or 
doing other actuarial work.385  This is related to but somewhat different than presenting a formal 
written report on your work.386 This is related to but somewhat different than writing a paper for 
publication.387

Model documentation serves at least three purposes:388

● To serve as a check on your own work, and to improve your communication skills
● To facilitate the transfer of knowledge to the next owner of the model
● To comply with the demands of internal and external stakeholders

Writing down and explaining what you are doing is one way to discover mistakes, particularly 
when you discuss your notes with another actuary.389  This should be an ongoing process; you 
should not wait until you are wrapping up the project. Documenting your work should improve 
your understanding of that work, as well improve your general communication skills.

Usually a model will be used more than once. For example, classification relativities may be 
reviewed once a year.390 If you performed the current review, either you or someone else will be 
doing the next review. 

If you do the next review, one year later you will be surprised at how much you do not remember 
or that is not longer obvious to you. You will appreciate the detailed notes that the former version 
of you took the previous year.

If someone else does the next review, they will appreciate your detailed notes, particularly if you 
are not available to explain what you did.391 

Many people may have questions about the model: insurance regulators, internal auditors, 
outside auditors, and risk managers. Also many people within your organization may have 
questions about the model: executives, underwriters, claims adjusters, other actuaries, and 
information technology personnel. Good documentation will help to answer detailed questions 
on your work that may have been done months or years ago. 
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383 See Chapter 8 of Generalized Linear Models for Insurance Rating.  Added to the 2019 edition.
While this chapter contains lots of good practical advice, there is not much to be tested.
384 You might also benefit from looking at ASOP41: Actuarial Communications 
and ASOP56: Modeling, not on the syllabus of this exam.
385 This is very helpful even for such a relatively simple task as updating an edition of this study guide. 
I have a steno book filled with detailed notes on what I have done updating various editions.
386 Such a report may be for internal consumption, may be part of a rate filing, or may be a loss reserve opinion.
387 A good example is “NCCIʼs 2007 Hazard Group Mapping,” by John P. Robertson, published in Variance.
388 Quoted from Section 8.1 of Generalized Linear Models for Insurance Rating.
389 Personally, I find it very useful to include in my notes short numerical examples.
390 Besides using updated data, such a review may include investigating new classification variables and/or 
reviewing the form of the model.
391 Do unto others as you would have them do unto you.



To meet the needs of these stakeholders, your documentation should:392 393

● Include everything needed to reproduce the model from source data to model output394

● Include all assumptions and justification for all decisions
● Disclose all data issues encountered and their resolution
● Discuss any reliance on external models or external stakeholders
● Discuss model performance, structure, and shortcomings
● Comply with ASOP 41 or local actuarial standards on communications395 

As always it is preferable to have clearer computer code, and when appropriate better 
commented computer code.396
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392 Quoted from Section 8.3 of Generalized Linear Models for Insurance Rating.
393 This is an idealized list which may not be practical in some situations.
394  I recommend that you print out and maintain a hardcopy of all important computer programs as part of your 
documentation.
395 Actuarial Standard of Practice 41: Actuarial Communications, 
applies to actuaries practicing in the United States.
396 The authors recommend that if you use the computer language R, you should use the tidyverse package and 
adhere to the tidyverse style guide



Other Topics:397 

The syllabus reading discusses three additional topics:

� 

• Why you probably should not model coverage options with GLMs.

� 

• Why territories are not a good fit for the GLM framework.

� 

• Ensembling.

Coverage Options:398

Insureds can choose coverage options such as deductible amount or limit of liability.399 
There are corresponding deductible credits or increased limits factors.400 
You probably should not model the rating factors for coverage options with GLMs.

For example, a GLM might indicate that one should charge more for a higher deductible. 
There may be something systematic about insureds with higher deductibles that may make 
them a worse risk relative to others in their class.401 In which case, the coefficients estimated by 
the GLM are reflecting some of this increased risk due to antiselection effects.

To the extent that the factor indicated by the GLM differs from the pure effect on loss potential, it 
will affect the way insureds choose coverage options in the future. Thus, the selection dynamic 
will change and the past results would not be expected to be replicated for new policies.

Thus factors for coverage options should be estimated outside the GLM, using traditional 
actuarial techniques.402  The resulting factors should then be included in the GLM as an offset, 
as has been discussed previously.

Examples of GLM Output:

On my webpage I have posted a file in which I discuss some examples of GLM output taken 
from Chapter 10 and Appendix F of Basic Ratemaking, on the syllabus of the Basic Ratemaking 
exam.403 While these examples should not be tested directly on your exam, you may find it 
helpful to briefly review them. 
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397 See Chapter 9 of Generalized Linear Models for Insurance Rating. 
398 See Section 8.1 of Generalized Linear Models for Insurance Rating. 
399 These can be distinguished from characteristics of the insured.
400 In general, the insured should pay less for less coverage and more for more coverage.
401 “The choice of high deductible may be the result of a high risk appetite on the part of an insured, which would 
manifest in other areas as well. Alternately, the underwriter, recognizing an insured as a higher risk, may have 
required the policy to be written at a higher deductible.”
402 This is the recommendation of Goldburd, Khare, and Tevet.
Even if the final factors for coverage options are not estimated within the GLM, I think the results of including 
coverage options in a GLM may reveal something interesting and potentially important to the actuary.
403 Also included are some related problems from past Basic Ratemaking exams.



Territory Modeling:404 

Territories are not a good fit for the GLM framework. 

There may have hundreds of territories, which requires many levels in the GLM. Therefore, the 
authors recommend the use of other techniques, such as spatial smoothing, to model 
territories.405  

One should include the territory relativities produced by the separate model as an offset in the 
GLM used to determine classification relativities. Similarly, one should include classification 
relativities produced by the GLM as an offset in the separate model used to determine territory 
relativities.406 

Ideally this should be an iterative process.407 

Ensembling:408

Two (or more) teams model the same item; they build separate models working independently.
The models are evaluated and found to be approximately equal in quality.

Combining the answers from both models is likely to perform better than either 
individually.409  A model that combines information from two or more models is called an 
ensemble model.

A simple means of ensembling is to average the separate model predictions.410  “Predictive 
models each have their strengths and weaknesses. Averaged together, they can balance each 
other out, and the gain in performance can be significant.”
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404 See Section 9.2 of Generalized Linear Models for Insurance Rating. 
I believe the authors are discussing determining territory relativities rather than constructing territories from smaller 
geographical units such as zipcode. However, they may be discussing doing both together.
405 The authors do not discuss any details of spatial smoothing or other techniques.
406 In determining territories one should adjust the pure premiums for a zipcode by its average class rating factor.
Chapter 11 of Basic Ratemaking by Werner and Modlin have a discussion of determining territories.
407 If they being updated at the same time, both models should be run, using the other as an offset, until they reach 
an acceptable level of convergence.
408 See Section 9.3 of Generalized Linear Models for Insurance Rating. 
409 Of course it is costly to have two teams build two separate models. 
“Done properly, though, ensembles can be quite powerful; if resources permit, it may be worth it.”
410 The authors do not discuss more complicated methods of ensembling.



A More Realistic and Complex Example: 

Consider the following data on claim severity for personal auto insurance:411

Observation Age Group Vehicle-Use Severity Claim Count
1 17–20 Pleasure 250.48 21
2 17–20 Drive to Work < 10 miles 274.78 40
3 17–20 Drive to Work > 10 miles 244.52 23
4 17–20 Business 797.80 5
5 21–24 Pleasure 213.71 63
6 21–24 Drive to Work < 10 miles 298.60 171
7 21–24 Drive to Work > 10 miles 298.13 92
8 21–24 Business 362.23 44
9 25–29 Pleasure 250.57 140

10 25–29 Drive to Work < 10 miles 248.56 343
11 25–29 Drive to Work > 10 miles 297.90 318
12 25–29 Business 342.31 129
13 30–34 Pleasure 229.09 123
14 30–34 Drive to Work < 10 miles 228.48 448
15 30–34 Drive to Work > 10 miles 293.87 361
16 30–34 Business 367.46 169
17 35–39 Pleasure 153.62 151
18 35–39 Drive to Work < 10 miles 201.67 479
19 35–39 Drive to Work > 10 miles 238.21 381
20 35–39 Business 256.21 166
21 40–49 Pleasure 208.59 245
22 40–49 Drive to Work < 10 miles 202.80 970
23 40–49 Drive to Work > 10 miles 236.06 719
24 40–49 Business 352.49 304
25 50–59 Pleasure 207.57 266
26 50–59 Drive to Work < 10 miles 202.67 859
27 50–59 Drive to Work > 10 miles 253.63 504
28 50–59 Business 340.56 162
29  60+ Pleasure 192.00 260
30  60+ Drive to Work < 10 miles 196.33 578
31  60+ Drive to Work > 10 miles 259.79 312
32  60+ Business 342.58 96
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411 Data taken from Exhibit 1 of “A Systematic Relationship Between Minimum Bias and Generalized Linear 
Models,” by Stephen J. Mildenhall, PCAS 1999, not on the syllabus.



There are 8 age categories and 4 vehicle use types.
Thus there are a large number of ways to set up a GLM.
I will make age 40-49 and drive to work less than 10 miles as the base levels. 

I will use the following definitions of variables:
X0 corresponds to the base levels.
X1 is one if 17-20 years old and zero otherwise.
X2 is one if 21-24 years old and zero otherwise.
X3 is one if 25-29 years old and zero otherwise.
X4 is one if 30-34 years old and zero otherwise.
X5 is one if 35-39 years old and zero otherwise.
X6 is one if 50-59 years old and zero otherwise.
X7 is one if 60+ years old and zero otherwise.
X8 is one if Pleasure Use and zero otherwise.
X9 is one if Drive to Work > 10 and zero otherwise.
X10 is one if Business Use and zero otherwise.

A Gamma Distribution with an identity link function was fit to these data:412 

Parameter Fitted Value Standard Error p-Value

β0 203.522 6.54517 0

β1 62.9056 37.0291 8.9%

β2 66.1851 19.4111 0

β3 46.1676 12.5584 0

β4 33.2979 11.3777 0.3%

β5 -15.289 9.57527 11.0%

β6 3.57547 8.79087 68.4%

β7 -1.84956 9.5907 84.7%

β8 -8.63574 8.22596 29.4%

β9 45.1086 7.43089 0

β10 122.802 13.4003 0
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412 The fitted severities are: 257.79, 266.43, 311.54, 389.23, 261.07, 269.70, 314.82, 392.51, 241.05, 249.69, 
294.80, 372.49, 228.19, 236.82, 281.93, 359.62, 179.60, 188.23, 233.34, 311.04, 194.89, 203.52, 248.63, 326.32, 
198.46, 207.10, 252.21, 329.90, 193.04, 201.67, 246.78, 324.47.



Based on their large p-values, β5, β6, β7, and β8 are not significantly different than zero.
Let us test a model in which we eliminate the corresponding variables.
The reduced model will have:
Age 35-39 combined with 40-49.
Age 50-60 combined with 60+.
Pleasure use combined with Drive to Work < 10 miles.
Another GLM with Gamma Distribution with an identity link function was fit to these data.413 414 

The unscaled deviance for the original model with more variables is 31.2438 415 
The unscaled deviance for the new model with less variables is 37.0310.

We have two nested models. GLM 1 is a special case of GLM 2.
Then the test statistic (asymptotically) follows an F-Distribution with numbers of degrees of 
freedom equal to: ν1 = the difference in number of parameters = 3,
and ν2 = number of degrees of freedom for the more complex model 
            = (number of observations) - (number of parameters) = 32 - 7 - 3 = 22.

φ̂B  = estimated dispersion parameter for the bigger (more complex) model 
! = DB / νB = 31.2438/22 = 1.420.416 

The test statistic is: DS - DB
(number of added parameters) φ̂B

 = (37.0310 - 31.2438) / 3
1.420

 = 1.358.

Using a computer, the p-value is 45.8%.
Thus we do not reject the null hypothesis of using the simpler model with fewer parameters.417 
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413 The fitted parameters are: 196.36, 67.41, 71.78, 50.88, 38.42, 6.13, 47.01, 125.74.
414 The fitted severities are: 263.77, 310.77, 389.51, 268.14, 315.15, 393.88, 247.24, 294.248, 372.98, 234.78, 
281.79, 360.52, 196.36, 243.37, 322.10, 202.49, 202.49, 249.49, 328.23.
415 A computer was used to fit both models and to calculate the unscaled deviances. 
416 The syllabus reading does not discuss how to estimate φ; this is one way. 
417 One could now compare additional models with different subsets of the original variables.
One could also fit models using different distributional forms and/or link functions.



Example of Homeowners Rating Factors Used in the United Kingdom:418 

Personal lines rates in the United Kingdom have long been based on GLMs. 
One important aspect to using GLMs is to find relevant variables.
Here is a list of some rating variables that are used for Homeowners Insurance.

Postal code (so geodemographic and geophysical factors can be derived)419 
Amount of insurance
Number of rooms / bedrooms
Wall type
Roof type
State of repair
Extensions
Ownership status (rent/own)
Occupancy in day
Neighborhood watch scheme
Approved locks, alarms, smoke detectors
Deductibles
Endorsements purchased (e.g. riders for jewelry, oriental rugs)
How long held insurance / when last claimed

Policyholder details:
● Age
● Sex
● Marital status
● Number of children
● Occupation
● Residency
● Criminal convictions
● Claims in past 2 or past 5 years

Smokers present in house
Non-family members sharing house
Length of time living at property
Use (principal residence / secondary residence / business / rented)
Coverage selected (buildings/contents/both)
Source of business (e.g. agent, internet, etc.)
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418 “Homeowners Modeling” by Claudine Modlin, presentation at the 2006 CAS Seminar on Predictive Modeling.
419 Geodemographics are the average characteristics in an area. Examples are: population density, length of 
homeownership, average age of residents, and average family income. Geophysical factors can include soil type, 
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Homeowners Perils:

There can be advantages to modeling the different homeowners perils separately.420 
One can either model pure premium or separately model frequency and severity.

Some variables may have different effects on different perils. For example, increased population 
density may be related to an increased frequency for theft claims while being related to a 
decreased frequency of fire claims. 

Some variables may have a significant effect on one peril but not another. For example, more 
children in the house may be related to an increased frequency of liability while being unrelated 
to the frequency for wind. 

Here is an example of data by peril for the United States.

Peril Frequency (in percent) Median Claim Amount

Fire 0.310 4,152
Lightning 0.527 899
Wind 1.226 1,315
Hail 0.491 4,484
Water-Weather Related 0.491 1,481
Water-NonWeather377 1.332 2,167
Liability 0.187 1,000
Other 0.464 875
Theft-Vandalism 0.812 1,119

Total 5.889 1,661

The percent of losses expected by peril varies considerably by geographical location. For 
example, the expected percent from wind (from hurricanes and other storms) is higher than 
average on the coast of Florida. For example, the expected percent from theft is higher than 
average in the center of a large city. 

Recently, homeowners insurers have begun to implement rating plans that have separate base 
rates for each major peril covered and the individual rating variable relativities are applied to the 
applicable base rate (e.g., burglar alarm discount applies to the theft base rate only). 
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Problems:

3.1. (1.5 points) 
Five Generalized Linear Models have been fit to the same set of 50 observations.

Model Number of Fitted Parameters Scaled Deviance

A 6 335.8
B 8 331.9
C 10 325.2
D 12 321.4
E 14 317.0

Which model has the best AIC (Akaike Information Criterion)?

3.2. (0.5 points) Briefly discuss how to pick the base level of a categorical variable.

*3.3.* (1 point) When a log link is used, it is usually appropriate to take the natural logs of 
continuous predictors before including them in the model, rather than placing them in the model 
in their original forms. Discuss why.

3.4. (1.5 points) Fully discuss the use of weights in GLMs.

3.5. (0.5 points) Briefly discuss a primary strength of GLMs versus univariate analyses.

*3.6.* (0.5 points) A continuous predictor x1 has a coefficient of β1 = 0.4 in a logistic model.
For a unit increase in x1, what is the estimated change in the odds?

3.7. (1 point) Compare and contrast the Poisson and the Negative Binomial Distributions.

3.8. (0.5 points) With respect to GLMs, briefly discuss aliasing.

*3.9.* (0.5 points) List two limitations of GLMs.

3.10. (1 point) One possible fix for nonlinearity in a continuous variable is not to model it as 
continuous at all; rather, a new categorical variable is created where levels are defined as 
intervals over the range of the original variable. Briefly discuss two drawbacks to this approach.

3.11. (1.5. points) A GLM has been fit using a Poisson Distribution with β̂1 = 0.02085 
with standard error 0.00120.
Using instead an overdispersed Poisson the estimate of φ is 7.9435.
For this second model, determine a 95% confidence interval for β1.

3.12. (1 point) Discuss the Tweedie Distribution.
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3.13. (1 point) You are given a double lift chart, sorted by ratio of the model prediction over the 
current plan prediction. Discuss the lift of the proposed model compared to the current plan.
 

3.14. (1 point) The flexibility afforded by the ability to use a link function is a good thing because 
it gives us more options in specifying a model, thereby providing greater opportunity to construct 
a model that best reflects reality. However, when using GLMs to produce insurance rating plans, 
an added benefit is obtained when the link function is specified to be the natural log function.
Briefly discuss this added benefit.

3.15. (1 point) A logistic regression has been fit to some data. For a certain threshold:
Predicted ClaimsPredicted Claims

No Yes Total
Actual
Claim

No 6000 2000 8000Actual
Claim Yes 300 700 1000

Total 6300 2700 9000
What point would be plotted in the ROC curve?

3.16. (2 points) List and briefly discuss four components of a predictive modeling project.

3.17. (1.5 points)
(a) (0.5 points) Define the partial residuals.
(b) (1 point) Discuss partial residual plots.
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3.18. (0.5 points) Briefly contrast the following two GLMs:
µ = exp[β0 + β1X1 + β2X2].
µ = exp[β0 + β1X1 + β2X2 + β3 X1X2].

3.19. (1 point) Any data set of sufficient size is likely to have errors. 
Briefly discuss two of the steps that should always be taken to attempt to catch and remedy 
some of the more common errors that can occur.

3.20. (0.5 points) List two types of Exploratory Data Analysis (EDA) plots and their purposes.

*3.21.* (1 point) Discuss some reasons to use frequency and severity models rather than a pure 
premium model.

3.22. (1.5 points) Fully discuss the use of an offset term in GLMs.

3.23. (0.5 points) Discuss the following graph of Cook’s Distance for 26 observations:

!

3.24. (1 point) Define the saturated and the null models, and discuss them with respect to scaled 
deviance.
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3.25. (1 point) Briefly comment on the following plot of deviance residuals of a model as a 
function of a predictor variable X2:

    

X2

Residual

3.26. (2 points) A GLM using a Tweedie Distribution and a log link function is being used to 
model pure premiums of private passenger automobile property damage liability insurance. 
There are 100,000 observations.
10 parameters including an intercept were fit.
The unscaled deviance is 233,183.65.
Credit score as a categorical variable is added to the model, with a total of 6 categories.
The unscaled deviance for this more complex model is 233,134.37, and the estimated 
dispersion parameter is 2.371.
Discuss how you would use an F-Test to determine whether credit score should be added to this 
model.

3.27. (2 points) The following 5 returns on a stock price are observed:
 -0.154, 0.239, -0.064, -0.328, 0.195.
Construct the corresponding Normal Q-Q Plot.
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3.28. (0.5 points) Areas have been labeled in the following graph of a Lorenz Curve. 
Determine the Gini index.

!

A

B

Line of
Equality

Lorenz
Curve

0.2 0.4 0.6 0.8 1.0
% of exposures

0.2

0.4

0.6

0.8

1.0
% of losses

3.29. (0.5 points) With respect to GLMs, briefly discuss pricing coverage options such as 
deductibles or increased limits.

3.30. (0.5 points) Give an example of a hinge function.

*3.31.* (0.5 points) Five logistic regressions have been fit to the same data. 
ROC curves have been drawn for each model.

Model Number of Parameters AUROC
A 1 0.58
B 2 0.66
C 3 0.73
D 4 0.79
E 5 0.75

Which model is preferred?
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3.32. (1 point) For a GLM, the estimated mean for an individual is 35, with variance 5.
Determine a 95% confidence interval for the estimated mean. 

3.33. (1.5 points) 
Five different Generalized Linear Models, have been fit to the same set of 400 observations.

Model Number of Fitted Parameters LogLikelihood
 A 3 -730.18
 B 4 -726.24
 C 5 -723.56
 D 6 -721.02
 E 7 -717.50

Which model has the best BIC (Bayesian Information Criterion)?

Use the following information for the following four questions:
● There is data on commercial building insurance claims frequency.
● A Poisson GLM was fit using the log link function.
● A categorical predictor used is building occupancy class, coded 1 through 4, 
! with 1 being the base class.
● A binary predictor used is sprinklered status, with 1 being yes and 0 being no.
● A continuous predictor used is: ln[amount of insurance / 200,000] = ln[AOI / 200,000].
● The fitted intercept is β0 = -3.8.
● The fitted parameters for building occupancy classes 2, 3, and 4 are:
!  β1 = 0.3, β2 = 0.5, β3 = 0.1.
● The fitted parameter for sprinklers is: β4 = -0.5.
● The fitted parameter for ln[AOI / 200,000] is: β5 = 0.4.
● An interaction term between sprinkler status and ln[AOI / 200,000] is included in the model;
! the fitted parameter is: β6 = -0.1.

3.34. (1 point) Determine the fitted frequency for a $100,000 building in occupancy class 1 
without sprinklers.

3.35. (1 point) Determine the fitted frequency for a $250,000 building in occupancy class 2 
with sprinklers.

3.36. (1 point) Determine the fitted frequency for a $300,000 building in occupancy class 3 
without sprinklers.

3.37. (1 point) Determine the fitted frequency for a $600,000 building in occupancy class 4 
with sprinklers.
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3.38. (1 point) The following are histograms of deviance residuals for GLMs. 
Which of the following histograms represents the best model? 

A.  B.

C.  D.

E.

3.39. (2 points) You are constructing a Generalized Linear Model. 
(a) (0.5 point) If the model is additive, what link function would you use?
(b) (0.5 point) If the model is multiplicative, what link function would you use?
(c) (0.5 point) If the variance is proportional to the mean, what distribution would you use?
(d) (0.5 point) If the standard deviation is proportional to the mean, what distribution would 
! you use?
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3.40. (1 point) For a GLM, here is a partial residual plot for the predictor variable X4:

!

20 40 60 80 100

- 40

- 20

20

Partial Residual

X4 

Briefly discuss the meaning of this plot. 
If necessary, what is a possible solution?

3.41. (1.5 points) With respect to GLMs, discuss the training, validation, and test sets.

3.42. (2 points) Exponential families have a relationship between their mean and variance:
V(Yi) = φ V(µi) / ωi, where V(µ) is the variance function.
List different exponential families and their variance functions.

3.43. (6 points) You are given the following 20 breaking strengths of wires:
500, 750, 940, 960, 1100, 1130, 1150, 1170, 1190, 1240, 1260, 1350, 1400, 1450, 1490, 1520, 
1550, 1580, 1850, 2000.
With the aid of a computer, construct a Normal Q-Q Plot. 
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*3.44.* (5 points) You have the following data on reported occurrences of a communicable 
disease in two areas of the country at 2 month intervals:

Months Area A Area B
2 8 14
4 8 19
6 10 16
8 11 21

10 14 23
12 17 27
14 13 28
16 15 29
18 17 33
20 15 31

Let X1 = ln(months).  Let X2 = 0 for Area A and 1 for Area B.!
Assume the number of occurrences Yi are Poisson variables with means µi, and
ln(µi) = β0 + β1X1i + β2X2i.!
Set up the equations to be solved in order to fit this model via maximum likelihood.

3.45. (1 point) Which of the following statements are true with respect to 
Generalized Linear Models?
1. Errors are assumed to be Normally Distributed.
2. The link function defines the relationship between the expected response variable and 
! the linear combination of the predictor variables.
3. The use of a log link function assumes the rating variables relate multiplicatively to one 
! another.

3.46. (1.5 points) Generalized Linear Models with a overdispersed Poisson error structure and a 
log link function have been fit in order to model claim frequency for Homeowners Insurance.
The models use many variables. The homes have been split into four age categories. 
A model that uses age has an unscaled deviance of 3306.9,
and an estimated dispersion parameter of 1.83.
An otherwise similar model that does not use age has an unscaled deviance of 3320.2.
The null hypothesis is to use the model that does not include age.
The alternative hypothesis is to use the model that does include age.
Calculate the F-test statistic. 
Discuss how you would perform the test.

*3.47.* (1 point) Discuss model lift.
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3.48. (1.5 points) The following graph displays the modeled log of the frequency relativity by age 
for two different frequency of premium payment: yearly in red pluses, and four times a year in 
blue dots. Also approximate 95% confidence intervals are shown for each case.

!

Question continued on the next page.
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The following similar graph displays the modeled log of the frequency relativity by age for males 
in blue dots and females in red pluses. 
Also approximate 95% confidence intervals are shown for each case.

!

Briefly compare and contrast the interaction of age of driver and payment frequency with the 
interaction of age of driver and gender.
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3.49. (0.5 points) For two GLMs you are given the following graphs based on holdout data:

! 10 20 30 40
Actual

10

20

30

40

50

Predicted

! 10 20 30 40
Actual

10

20

30

40

Predicted

Which model do you prefer and why?
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3.50. (2 points) There are three age groups of cars: A, B, C.
There are also three size categories of cars: small, medium, large.
Specify the following structural components of a generalized linear model. 
i. Design matrix
ii. Vector of model parameters 

3.51. (2 points) Briefly discuss, compare and contrast under-fitting and over-fitting a model.

3.52. (0.5 points) Discuss the following graph of Cook’s Distance for 21 observations:

! 5 10 15 20
i

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Cook's D

3.53. (2 points) 
Use the following information on two Generalized Linear Models fit to the same 100 data points:

Number of Fitted Parameters Loglikelihood

6 -321.06

7 -319.83
(a) Based on AIC (Akaike Information Criterion), which model is preferred?
(b) Based on BIC (Bayesian Information Criterion), which model is preferred?

3.54.(2 points) A GLM uses a Poisson Distribution.
One of the observations of the response variable is 11.
The corresponding fitted value is 9.5.
Determine the corresponding Deviance residual.

Hint: D = 2 {yi ln[yi / µ̂i ]
i=1

n

∑  - (yi - µ̂i)} .
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*3.55.* (1 point) Which of the following Normal Q-Q Plots is most likely to be of data drawn from 
a Normal Distribution? 

A. 

Normal Quant.

SampleQuantiles

 B. 

Normal Quant.

SampleQuantiles

C. Normal Quant.

SampleQuantiles

 D. 

Normal Quant.

SampleQuantiles

E. 

Normal Quant.

SampleQuantiles
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3.56. (2.5 points) For each of the following situations, give the typical generalized linear model 
form. State the distributional form of the error and link function typically used.
(a) Claim Frequencies.
(b) Claim Counts.
(c) Average Claim Sizes
(d) Probability of Policy Renewal
(e) Pure Premiums

*3.57.* (0.5 points) You are comparing two rating plans.
The first has a Gini Index of 0.48, while the second has a Gini Index of 0.55.
Which rating plan is preferred?

3.58. (1 point) You are given the following loss ratio chart for a proposed rating plan. 
Discuss the lift of the proposed plan compared to the current plan.
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3.59. (1 point) Below is a graph of a GLM fit to data, showing the natural log of the fitted 
multiplicative factors for levels of a variable. (8 is the base level.) 
Also shown are approximate 95% confidence intervals.
Briefly discuss what this graph tells the actuary about the fitted model.

3.60. (5 points) 
The observed claim frequencies for urban vs rural and male vs female drivers are:

Claim frequency Urban Rural
Male 0.200 0.100

Female 0.125 0.050
There are equal exposures in each of the four cells.
We will fit a GLM using a Poisson Distribution.
(a) (2.5 points) For an additive model, determine the maximum Iikelihood equations to be 
! solved.
(b) (2.5 points) For an multiplicative model, determine the maximum Iikelihood equations 
! to be solved.
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3.61. (1 point) A logistic regression has been fit to some data. For a certain threshold:
Predicted ClaimsPredicted Claims

No Yes Total
Actual
Claim

No 40,000 10,000 50,000Actual
Claim Yes 1200 1800 3000

Total 41,200 11,800 53,000

What point would be plotted in the ROC curve?

Use the following information for the next two questions:
X: 1 5 10 25

Y: 5 15 50 100
 
Y1, Y2, Y3, Y4 are independently Normally distributed with means µi = βXi, i = 1, 2, 3, 4, 
and common variance σ2. 

3.62. (2 points) Determine β̂  via maximum likelihood.

3.63. (3 points) Estimate the standard deviation of β̂ .

3.64. (1.5 points) A GLM is used to model claim size. 
You are given the following information about the model: 
● Claim size follows an Inverse Gaussian distribution. 
● Log is the selected link function. 
● The dispersion parameter is estimated to be 0.00510. 
● Territory and gender are used in the model.
● Selected Model Output: 

Variable                   β̂

Intercept 8.03

Territory D 0.18

Gender - Male 0.22
Calculate the standard deviation of the predicted claim size for a male in Territory D. 

3.65. (2 points) List four ways that an actuary can analyze the appropriateness of 
a Generalized Linear Model.
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3.66. (1 point) Briefly comment on the following plot of deviance residuals of a model as a 
function of the fitted values:

!

Fitted Value

Residual

3.67. (1 points) You have fit a Generalized Linear Model using an exponential family.
What is the scaled deviance?

3.68. (1 point) A GLM has been fit with a log link function.
Age is used, grouped into categories.
Gender is used.
There are categories of Use of Vehicle.
Territories are used.
The expected pure premium for the base is $207.
For the age group 24-26 the coefficient is 0.43.
For Male the coefficient is 0.22.
For Pleasure Use (No Driving to Work) the coefficient is -0.32.
For Territory H the coefficient is 0.36.
Determine the expected pure premium for a male, 24-26 years old, Pleasure Use, in Territory H.

3.69. (1 point) Define and briefly discuss ensemble models.

3.70. (2 points) A GLM uses an Inverse Gaussian Distribution.
One of the observations of the response variable is 288.
The corresponding fitted value is 361.
The estimated θ is 1/121.
Determine the corresponding Deviance residual.

Hint: For the Inverse Gaussian, D = θ (yi -  ŷi)2
 ŷi2  yii=1

n

∑ .
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3.71. (2 points) A GLM using a Gamma Distribution and a log link function is being used to 
model severity of personal injury claims. There are 25,000 observations.
3 parameters were fit: an intercept, time until settlement, and whether there is legal 
representation.
The unscaled deviance is 24,359. A variable is added to the model, equal to the product of the 
time until settlement and the legal representation variable. (This is an interaction variable.)
The unscaled deviance is now 24,352.  The estimated dispersion parameter is 1.22.
Determine whether this additional variable should be added to this model.
You may use the following:
If X follows an F-Distribution with 1 and n degrees of freedom, 
then X  follows a t-distribution with n degrees of freedom.
For n large, a t-distribution is approximately a Standard Normal Distribution.
Selected percentiles of the Standard Normal Distribution:

Values of z for selected values of Pr(Z < z)Values of z for selected values of Pr(Z < z)Values of z for selected values of Pr(Z < z)Values of z for selected values of Pr(Z < z)Values of z for selected values of Pr(Z < z)
z 0.842 1.036 1.282 1.645 1.960 2.326 2.576
Pr(Z < z) 0.800 0.850 0.900 0.950 0.975 0.990 0.995

*3.72.* (1.5 points) Fully discuss model stability and some ways to assess it.

3.73. (8 points) You are given 19 data points:
258, 636, 652, 814, 833, 860, 895, 937, 950, 1009,
1020, 1059, 1103, 1113, 1127, 1139, 1246, 1335, 1770.
You wish to compare this data to a Normal Distribution with µ = 1000 and σ = 300.
With the aid of a computer, draw a Q-Q plot.

3.74. (2 points) A GLM uses a Gamma Distribution.
The estimated shape parameter α is 5.
One of the observations of the response variable is 113.
The corresponding fitted value is 102.4.
Determine the corresponding Deviance residual.

Hint: D =  2 α {-ln[yi / ŷi ]
i=1

n

∑  + (yi - ŷi) / ŷi  } .
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3.75. (4 points) For private passenger automobile liability claim frequency, you use three factors: 
gender, age of driver, and territory.   
There are 4 levels for driver age, and 3 territories.
A GLM with a log link function is fit.  
An intercept term is used. 
Let β1 correspond to the intercept term, β2 correspond to male, 
and assign the other parameters as follows:

Age of driverAge of driver TerritoryTerritory

Factor level Parameter Factor level Parameter

17-21 β3 A β6

22-29 β4 B

30-59  C β7

60+ β5  

(a) (3 points) What is the design matrix?
(b) (0.5 point) In terms of the fitted parameters, what is the estimated frequency for
! a 30-59 year old female driver in Territory B? 
(c) (0.5 point) In terms of the fitted parameters, what is the estimated frequency for 
! a 22-29 year old male driver in Territory C? 

3.76. (1.5 points) Five Generalized Linear Models have been fit to the same set of 
200 observations.

Model Number of Fitted Parameters LogLikelihood

A 3 -359.17

B 4 -357.84

C 5 -356.42

D 6 -354.63

E 7 -353.85
Which model has the best AIC (Akaike Information Criterion)?
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3.77. (1.5 points) The following graph displays the modeled log of the relativity by vehicle 
symbol, for a base level of the other predictor variables in a GLM, for two separate years of 
data.  Approximate 95% confidence intervals are shown.

!
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Here is a second similar graph for a different model, by Territory:

!
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Briefly compare and contrast what the two graphs tell the actuary about each model.
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3.78. (1.5 points) Before embarking on a GLM modeling project, it is important to understand the 
correlation structure among the predictors. 
Discuss why this is important and what actions may be indicated.

3.79. (1 point) Multiplicative models are the most common type of rating structure used for 
pricing insurance, due to a number of advantages they have over other structures.
Briefly discuss two advantages of a multiplicative rating structure.

3.80. (1.5 points) A GLM using a Gamma Distribution has been fit for modeling severity of 
medical malpractice claims. There are 1000 observations.  
50 parameters were fit, including an intercept.
It uses gender and 6 categories of age of claimant. 
The unscaled deviance is 1120.3 and the estimated dispersion parameter of 0.395.
An otherwise similar GLM excluding gender and age of claimant has an unscaled deviance of 
1128.1.
Discuss how you would use an F-Test to determine whether age and gender should be used in 
this model.

3.81. (1.5 point) Briefly discuss limitations on the use of the loglikelihood and deviance to 
compare the fit of two GLMs.

3.82. (1 point) An insurer sells “Disgrace Insurance” which covers a business against the 
possibility that their celebrity spokesperson may engage in disgraceful behavior or expressions. 
You are putting together Generalized Linear Models (GLMs) to try to develop a rating algorithm. 
Assuming you have plenty of good data, list some variables you would include in your testing of 
possible GLMs.

3.83. (1 point) Compare and contrast the Gamma and the Inverse Gaussian Distributions.

3.84. (1 point) A GLM uses a Normal Distribution.
One of the observations of the response variable is 71.
The corresponding fitted value is 74.8.
The estimated σ is 23.
Determine the corresponding Deviance residual.

Hint: D = 1
σ2

 (yi - µ̂i)2
i=1

n

∑ .
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3.85. (1.5 points) An actuary has historical information relating to personal loan default rates. 
A logistic model (GLM with a logit link function) was used to estimate the probability of default for 
a given customer. 
The two variables determined to be significant were the size of loan in thousands of dollars and 
the credit score of the customer. 
β0 corresponds to the intercept term, β1 corresponds to size of loan, and 
and β2 corresponds to credit score
The parameter estimates were determined to be as follows: 

β0 9.5

β1 0.01

β2 -0.02
a. (0.75 point) Calculate the estimated default rate for a customer who has credit score of 670 
! and took out a loan for $180,000. 
b. (0.75 point) Calculate the estimated default rate for a customer who has credit score of 760 
! and took out a loan for $100,000. 

3.86. (1 point) For a GLM, here is a partial residual plot for the predictor variable X1:

!

Briefly discuss the conclusion from this plot. 
If necessary, what is a possible solution?
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3.87. (6 points) We model average claim severity by type and horsepower of the car:
● Type: Sedan or SUV
● Horsepower: Low, Medium, or High
We observe an equal number of vehicles of each of the six possible types,
and the observed average claim severities are:

Sedan SUV

Low Horsepower 800 1,500

Medium Horsepower 900 1,700

High Horsepower 1,100 2,000
We will fit a GLM using a Gamma Distribution.
(a) (3 points) For an additive model, determine the maximum Iikelihood equations to be solved.
(b) (3 points) For an multiplicative model, determine the maximum Iikelihood equations 
! to be solved.

3.88. (2 points) A GLM using an Inverse Gaussian Distribution and an inverse link function is 
being used to model severity of private passenger automobile property damage liability claims. 
There are 2000 observations.
14 parameters including an intercept were fit.
The unscaled deviance is 1848.5.
A categorical variable is added to the model based on vehicle type, with a total of 10 categories.
The unscaled deviance for this more complex model is 1833.0, and the estimated dispersion 
parameter is 0.93.
Discuss how you would use an F-Test to determine whether vehicle type should be added to this 
model at the 5% significance level.

3.89. (1.5 points) Five Generalized Linear Models have been fit to the same set of 
250 observations.

Model Number of Fitted Parameters Scaled Deviance

A 6 1679.1
B 8 1666.4
C 10 1655.9
D 12 1646.2
E 14 1634.5

Which model has the best BIC (Bayesian Information Criterion)?
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3.90. (1 point) 
A Generalized Linear Model was fit to data on lapse rates for life insurance policies.
Three predictor variables were included in the GLM: 
calendar year of exposure, policy duration, and product class.
The graph below displays logs of the relativities by policy duration.
For each band, the black bars at bottom show exposure, quantified on the righthand axis.
The GLM results are in green, and are relative to the base level for policy duration. 
The yellow line (lighter line) is what would have been generated by a ‘one-way’ analysis: i.e.,
considering just policy duration, without any other factors. 

Briefly discuss a likely reason why the green and yellow lines differ.

3.91. (0.5 points) A continuous predictor x2 has a coefficient of β2 = -0.3 in a logistic model.
For a unit increase in x2, what is the estimated change in the odds?
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3.92. (1 point) We are fitting a GLM to private passenger automobile liability pure premiums.
Female drivers age 31 to 59 in a rural territory may have observed pure premiums higher or
lower than their fitted values.
Unmarried male drivers age 17 to 21 in an urban territory may have observed pure premiums 
higher or lower than their fitted values. 
Contrast the effect on fitting the GLM of the modeling errors from these two groups.

3.93. (1 point) A logistic regression has been fit to some data. For a certain threshold:
Predicted FraudPredicted Fraud

No Yes Total

Actual
Fraud

No 70,000 10,000 80,000Actual
Fraud Yes 3000 2000 5000

Total 73,000 12,000 85,000

What point would be plotted in the ROC curve?

3.94. (1 point) How would the standard error help to analyze the results of fitting a Generalized 
Linear Model (GLM)?

3.95. (1 point) For a rating plan, briefly discuss how to construct a Lorenz Curve and how to 
compute the Gini Index.

3.96. (4 points) Assume a set of three observations: 
For z = 1, we observe 4.  For z = 2, we observe 7.  For z = 3, we observe 8.
Fit to these observations a Generalized Linear Model with a Poisson Distribution and a log link 
function.  In other words, assume that each observation is a Poisson random variable, 
with mean λ and ln(λ) = β0 + β1z.

3.97. (1 point) In addition to statistical significance, give other considerations for variable 
selection.
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3.98. (3.5 points) A personal auto class system has three class dimensions:
● Sex: Male vs female
● Age: Youthful vs adult vs retired
● Territory: Urban vs suburban vs rural
An actuary sets rate relativities from the experience of 20,000 cars.
● Urban is the base level in the territory dimension.
● Adult is the base level in the age dimension.
● Male is the base level in the sex dimension.
a. (0.5 point) How many elements does the vector of covariates have in a multiplicative model?
b. (0.5 point) How many elements does the vector of covariates have in an additive model?
c. (1 point) Specify each element of the vector of parameters, with β0 ⇔ the base class.
d. (0.5 point) How many columns does the design matrix have?
e. (0.5 point) How many rows does the design matrix have if each record is analyzed 
! separately?
f.  (0.5 point) For grouped data, how many rows does the design matrix have?

3.99. (2 points) Answer the following with respect to deviance residuals of a GLM.
(a) (0.5 points) Define the deviance residual.
(b) (0.5 points) Give an intuitive interpretation of deviance residuals.
(c) (1 point) Discuss how deviance residuals can be used to check the fit of a model.

3.100. (4 points) You have the following data on the renewal of homeowners insurance policies 
with the ABC Insurance Company:

Number of Years Insured Number of Policies Number of Policies Renewed

1 1000 900

2 900 820

3 800 740

4 700 660

5 600 580
Let X = number of years insured with ABC Insurance Company.!
A Generalized Linear Model using a Binomial Distribution with a logit link function will be fit to 
this data, including an intercept term.
Determine the equations to be solved in order to fit this model via maximum likelihood.

3.101. (0.5 points) The variance of a distribution from the exponential family can be expressed 

using the following formula: Var(yi) = φ V(µi)
ωi

.

Define the parameters φ and ωi in the formula above.
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Use the following information for the next five questions:
X 2 5 8 9
Y 10 6 11 13

Y1, Y2, Y3, Y4 are independently Normally distributed with means µi = β0 + β1Xi, i = 1, 2, 3, 4,  
and common variance σ2. 

3.102. (2 points) Determine β̂1 via maximum likelihood.

3.103. (2 points) Determine β̂0  via maximum likelihood.

3.104. (2 points) Determine σ̂  via maximum likelihood.

3.105. (3 points) Estimate the standard deviation of β̂1.

3.106. (3 points) Estimate the standard deviation of β̂0 .

3.107. (1 point) Five Generalized Linear Models have been fit to the same set of observations.
Each model uses the same number of parameters.
Which of these models is preferred?

Model Scaled Deviance

A 3609.5

B 3611.0

C 3606.3

D 3602.1

E 3605.8

3.108. (1 point) Discuss the overdispersed Poisson Distribution.

*3.109.* (1 point) A common statistical rule of thumb is to reject the null hypothesis where the 
p-value is 0.05 or lower. Is this appropriate for a typical insurance modeling project? 
Why or why not?
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3.110. (1 point) For a GLM, here is a partial residual plot for the predictor variable X3:

! 6 8 10 12

- 1.5

- 1.0

- 0.5

0.0

0.5

1.0

1.5
Partial Residual

X3  

Briefly discuss the meaning of this plot. 
If necessary, what is a possible solution?

*3.111.* (0.5 points) With respect to GLMs, briefly discuss multicollinearity.

3.112. (1 point) An actuary is determining the rates by class and territory.
With respect to GLMs, briefly discuss determining territory relativities.

3.113. (1 point) 
Define a holdout sample of data, and briefly discuss how it can be used in GLM validation.
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3.114. (1 point) The following graph shows claim frequency for private passenger automobile 
insurance by gender and age. (The rectangles represent the number of exposures.)

Briefly discuss the implications for modeling frequency via a Generalized Linear Model.

3.115. (2 points) Using Generalized Linear Models, an actuary Edward Conners has developed 
a policy renewal model for private passenger automobile insurance written by the Some States 
Insurance Company. There are two predictor variables:
z1 = the number of years the insured has been with Some States.
z2 = the age of the principal operator of the vehicle.

The predicted probability of policy renewal is: Exp[0.6 + 0.05 z1 + 0.02 z2]
1 + Exp[0.6 + 0.05 z1 + 0.02 z2]

.

(a) For a principal operator who is 30 years old, what is the multiplicative relativity of 1 year with
! Some States compared to 10 years with Some States?
(b) For a principal operator who is 50 years old, what is the multiplicative relativity of 1 year with
! Some States compared to 10 years with Some States? 
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3.116. (1 point) Briefly comment on the following plot of deviance residuals of a model as a 
function of a predictor variable X3:

!

X3

Residual

3.117. (6 points) You are given the following information on the labor force participation of 10 
married women between the ages of 25 and 35:

Child of Age 6 or Less Years of Education Participating in the Labor Force
No 12 Yes
No 14 No
No 15 Yes
No 16 No
No 17 Yes
Yes 10 No
Yes 11 No
Yes 13 Yes
Yes 15 No
Yes 16 Yes

A Generalized Linear Model using a Binomial Distribution with a logit link function will be fit to 
this data, including an intercept term.
a. (1 point) What are the design matrix and the response vector?
b. (5 points) Determine the equations to be solved in order to fit this model via maximum 
! likelihood.

3.118. (1 point) Les N. DeRisk is an actuary. Les has scrubbed and adjusted the data he will be 
using for classification ratemaking for a certain line of insurance. 
Les will run a Generalized Linear Model. List 3 things Les has to specify.
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3.119. (1.5 points) You are given two simple quantile plots, one sorted by the current plan and 
one sorted by a proposed plan. 
Discuss the lift of the proposed plan compared to the current plan.

3.120. (0.5 point) Give an example of a situation where a GLM with a Binomial distribution and 
logit link function would be used.

Use the following information for the next two questions:
● A GLM using a Gamma Distribution and a log link function has been fit 
! for modeling severity of auto claims. 
● The explanatory variables are: x1 driver age, and x2 marital status where 1 = married.
● The fitted coefficients are: β0 = 8.80, β1 = -0.03, β2 = -0.15.
● The estimated φ = 0.3.

*3.121.* (1 point) Determine the estimated mean severity for a 30 year old married driver.

*3.122.* (1 point) Determine the estimated variance of severity for a 40 year old unmarried 
driver.
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3.123. (2 points) The following graph displays the modeled log of the relativity by vehicle 
symbol, for a base level of the other predictor variables in a GLM. 
The bold line shows the fitted parameter estimates.
Lines indicates two standard errors on either side of the parameter estimate.
The dotted line show the relativities implied by a simple one-way analysis. The distribution of 
exposure for all business considered is also shown as a bar chart at the bottom.

Here is a second similar graph for a different model.

Briefly compare and contrast what the two graphs tell the actuary about each model.
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*3.124.* (1 point) For a line of insurance, an actuary fits separate GLMs to different perils.
Discuss one way to combine separate models by peril in order to get a model for all perils.

3.125. (2 points) Claim counts for private passenger automobile insurance are Poisson. 
The mean frequency, m, depends on age and gender.
Briefly discuss and contrast the following two models, where x is age.
(a) (1 point)  log(µ) = αi + βx, where α1 and α2 depend on gender.
(b) (1 point)  log(µ) = αi + βix, where α1, α2, β1, and β2 depend on gender.

3.126. (2 points) A GLM uses a Binomial Distribution.
For m = 8, an observation of the response variable is 3.
The corresponding fitted value q is 0.2.
Determine the corresponding deviance residual.

Hint: D =  2 {yi ln[ yi
ŷi
]

i=1

n

∑  + (mi - yi) ln[ mi - yi
m i - ŷi

] } .

3.127. (1 point) List and briefly discuss two potential drawbacks of using using piecewise linear 
functions (hinge functions) in GLMs. 

3.128. (1.5 points) An insurer uses a GLM for classification ratemaking. 
The insurer is considering using a different GLM instead. 
You are given the following data on five insureds.

Insured Actual Loss Cost Loss Cost Predicted by
Proposed Model

Earned Premium at 
Present Rates

1 28,000 26,000 43,000

2 25,000 32,000 49,000

3 42,000 37,000 57,000

4 36,000 43,000 61,000

5 48,000 41,000 66,000
Construct a Loss Ratio Chart that management can use to assess lift. !
Identify the basis of sorting the data.
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3.129. (1 point) The following a histograms of deviance residuals for GLMs. 
Which of the following histograms represents the best model? 

A.  B.

C.  D.

E.

3.130. (1 point) Geoff Linus Modlin is an actuary using Generalized Linear Models (GLMs) to 
determine classification rates for private passenger automobile insurance. 
Geoff notices that the relativity for drivers aged 19 is different between two GLMs based on the
same data. Briefly discuss why that can be the case.
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3.131. (1 point) You observe 36 monthly returns on a stock.
The 9th value from smallest to largest is 0.004.  
What is the corresponding point in the Normal Q-Q Plot?

3.132. (1.5 points) With respect to GLMs, fully discuss variance inflation factors (VIF).

3.133. (1.5 points) Dollar Bill Bradley, an actuary at the Knickerbocker Insurance Company, has 
fit a Generalized Linear Model with a overdispersed Poisson error structure and a log link 
function in order to model claim frequency for automobile liability insurance. 
His model has a unscaled deviance of 2196.1 and estimated dispersion parameter of 2.22.
Bill now introduces into the model an additional categorical variable with five categories:
1. Insured has homeowners insurance with Knickerbocker.
2. Insured has homeowners insurance with another insurer.
3. Insured has renters insurance with Knickerbocker.
4. Insured has renters insurance with another insurer.
5. Other
With this additional variable, the model has a unscaled deviance of 2179.3 and estimated 
dispersion parameter of 2.09.
The null hypothesis is to use the simpler model.
The alternative hypothesis is to use the more complicated model.
Determine the F-test statistic and discuss how you would perform the statistical test.

*3.134.* (1.5 points) Fully discuss cross validation as used with GLMs, including any limitations

3.135. (1 point) A GLM has been fit in order to predict blood pressure of individuals.
Variable Coefficient VIF

Constant -12.87

Age 0.7033 1.76

Weight 0.9699 10.42

Body Surface Area 3.780 6.33

Duration of Hypertension 0.0684 1.24

Basal Pulse -0.0845 4.41

Stress Index 0.00341 1.83

Briefly discuss this output.!
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3.136. (2 points) Below are graphs of GLMs fit to Homeowners frequency data, showing the 
natural log of the fitted multiplicative factors for one or two children in the house relative to none. 
Also shown are approximate 95% confidence intervals.
Briefly compare and contrast what the two graphs tell the actuary about each model.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 421
 



3.137. (2.5 points) An actuary at a private passenger auto insurance company wishes to use a 
generalized linear model to create an auto severity model using the data below.

Dollars of LossDollars of Loss
Gender Territory A Territory B

Male 700,000 500,000
Female 400,000 300,000

Number of ClaimsNumber of Claims

Gender Territory A Territory B

Male 800 700

Female 600 500

The model will include three parameters: β1, β2, β3, where β1 is the average severity for
males, β2 is the average severity for Territory A, and β3 is an intercept.
Assuming β3 = 570.356, solve a generalized linear model with a normal error structure 
! and identity link function for β1.

3.138. (1.5 points) 
Five Generalized Linear Models have been fit to the same set of 60 observations.

Model Number of Fitted Parameters LogLikelihood

A 2 -220.18

B 3 -217.40

C 4 -214.92

D 5 -213.25

E 6 -211.03
Which model has the best BIC (Bayesian Information Criterion)?

3.139. (1 point) You fit a GLM using year as one of the predictor variables.
The values of year in your data are: 2010, 2011, 2012, 2013, and 2014.
You pick 2012 as the base level.
Applying statistical tests you determine that the coefficients for 2011 and 2014 
are not significant.
Discuss what would you do.
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3.140. (3 points) You are given the following wage distribution table:

Ratio to SAWW Cumulative Portion of Workers Cumulative Portion of Wages
0.10 0.18% 0.01%
0.20 0.93% 0.13%
0.30 3.53% 0.79%
0.40 6.85% 1.96%
0.50 11.33% 4.00%
0.60 18.49% 7.98%
0.70 28.57% 14.56%
0.80 40.05% 23.13%
0.90 48.99% 30.75%
1.00 57.47% 38.80%
1.10 64.98% 46.69%
1.20 71.14% 53.76%
1.30 76.34% 60.25%
1.40 80.99% 66.51%
1.50 85.33% 72.80%
1.75 92.86% 84.92%
2.00 96.91% 92.48%
2.25 98.73% 93.41%
2.50 99.28% 94.41%
3.00 99.66% 95.79%
4.00 99.87% 97.28%
5.00 99.93% 98.05%
6.00 99.96% 98.52%
7.00 99.97% 98.84%

With the aid of a computer, draw the corresponding Lorenz curve.

3.141. (2 points) Assume there are two models, Model A and Model B, both of which produce an 
estimate of the expected loss cost (pure premium) for each policyholder.
Discuss using Simple Quantile Plots to compare the two models A and B.
How are Simple Quantile Plots created?
How would one determine the winning model?

*3.142.* (1.5 points)
 A logistic model was built to predict the probability of a claim being fraudulent.
(a) Briefly define the discrimination threshold.
(b) Briefly discuss the selection of what discrimination threshold to use.
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3.143. (4 points) An actuary is considering using a generalized linear model to estimate the 
expected frequency of a recently introduced insurance product. 
Given the following assumptions: 
● The expected frequency for a risk is assumed to vary by territory and gender. 
● A log link function is used. 
● A Poisson error structure is used. 
● β0 is the intercept. 
● β1 is the effect of gender = Female. 
● β2 is the effect of Territory = B. 

Number of ClaimsNumber of Claims

Gender Territory A Territory B

Male 1200 1100

Female 800 900

Number of ExposuresNumber of Exposures

Gender Territory A Territory B

Male 24,000 15,000

Female 20,000 13,000

Given that β0 = -3.0300, determine the expected frequency of a female risk in Territory B. 

3.144. (1 point) Briefly discuss interaction in GLMs and give an example of an interaction term.

3.145. (2 points) A GLM has been used to develop an insurance rating plan.
There are only two classes A and B, with equal numbers of exposures.
The predicted pure premium for Class A is less than that for class B
(a) Determine the Gini Index if the actual losses for the two classes are equal.
(b) Determine the Gini Index if the actual losses for Class A are 0 and for Class B are positive.
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3.146. (0.5 points) The following ROC curves are for two medical tests for strep throat:

!

Which test do you prefer and why?

3.147. (1.5 points) 
A GLM has been fit using a Poisson Distribution with β̂1 = 5.624 with standard error 0.1978.
Using instead an overdispersed Poisson the estimate of φ is 3.071.
For this second model, determine a 95% confidence interval for β1.

3.148. (1.75 points) An analyst has fit several different variations of a GLM to a large dataset in 
order to predict pure premiums. 
For each model variation listed below, draw a simple quintile plot based on the training data. 
Label the axes and identify each data series. 
i. A saturated model 
ii. A null model 
iii. A model that could be used in practice
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3.149. (1 point) Otherwise similar GLMs have been fit, one using a Gamma Distribution and the 
other using an Inverse Gaussian Distribution. Based on the following histograms of standardized 
deviance residuals which model do you prefer and why.
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3.150. (1 point) The following loss ratio chart for a proposed rating plan was created by:
1. Sorting the dataset based on the model prediction, in other words modeled loss ratios.
2. Bucketing the data into deciles, such that each decile has approximately the same volume 
! of exposures.
3. Within each bucket, calculate the actual loss ratio (under the current plan) for risks within that 
! bucket. 
Discuss the lift of the proposed plan compared to the current plan.

! 1 2 3 4 5 6 7 8 9 10
Decile

10

20

30

40

50

60

Loss Ratio

Use the following information for the next two questions:
Three Generalized Linear Models have been fit to the same set of 5000 observations.

Model Number of Fitted Parameters LogLikelihood

A 5 -9844.16

B 10 -9822.48

C 15 -9815.70

3.151. (1 point) Which model has the best AIC (Akaike Information Criterion)?

3.152. (1 point) Which model has the best BIC (Bayesian Information Criterion)?
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*3.153.* (1 point) Below are plots of Actual vs. Predicted for two different GLMs. 

 

 
Which model do you prefer and why.
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3.154. (4 points) A GLM has been used to develop an insurance rating plan. 
The results are given below: 

Risk Exposures Model Predicted Pure Premium Actual Pure Premium

1 3 7000 6000

2 7 1000 4000

3 8 4000 2000

4 11 5000 8000

5 12 3000 1000

6 16 6000 8000

7 19 8000 6000

8 24 2000 4000
Plot the Lorenz curve for this rating plan. 
Label each axis and the coordinates of each point on the curve. 

*3.155.* (2 points) You are given a GLM of collision claim size with the following potential 
explanatory variables only: 
● Vehicle price, which is a continuous variable modeled with a second order polynomial 
● Vehicle Age which is a categorical variable with 8 levels
● Average driver age, which is a continuous variable modeled with a first order polynomial 
● Number of drivers, which is a categorical variable with three levels 
● Gender, which is a categorical variable with two levels 
● There is only one interaction in the model, which is between gender and average driver age. 
Determine the number of parameters in this model. 

3.156. (1.5 points) Discuss how to construct a double lift chart.

3.157. (1.5 points) 
Generalized Linear Models have been fit both with and without a certain predictor variable.

Model With Without

Unscaled Deviance 8,901.4414 8,905.6226

Degrees of Freedom 18,169 18,175

Scale Parameter 0.4523 0.4327
The null hypothesis is to use the simpler model.
The alternative hypothesis is to use the more complicated model.
Calculate the F-test statistic. 
Discuss how you would perform the test.
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3.158. (2 points) You are given the following GLM output: 
Response variable Pure Premium

Response distribution Gamma

Link log

Estimated alpha 2.2
 

Parameter df                  β̂

Intercept 1 5.07

Risk Group 2

Group 1 0 0.00

Group 2 1 0.21

Group 3 1 0.48

Vehicle Symbol 1

Symbol 1 1 -0.36

Symbol 2 0 0.00

Calculate the variance of the pure premium for an insured in Risk Group 3 
with Vehicle Symbol 1. 

3.159. (1 point) Two GLMs with somewhat different sets of variables have been fit to the same 
data. Model 1 has a Gini index of 0.16, while Model 2 has a Gini index of 0.12.
Briefly discuss which rating plan has better lift.

3.160. (1 point) Discuss how to construct a loss ratio chart.

*3.161.* (1 point) An actuary fits a GLM to a large amount of data on pure premiums for private 
passenger automobile insurance. The model includes driver age. 
The actuary wants to test adding a new variable, number of years claims-free: 
0, 1, 2, 3, 4 or more.
The new variable will only be used for drivers at least 25 years old.
The actuary fits an otherwise similar model that includes number of years claims-free to the 
same data. The effect of driver age in the second model is significantly less than in the first 
model. 
Briefly discuss why this may have occurred.
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3.162. (1 point) The following loss ratio chart for a proposed rating plan was created by:
1. Sorting the dataset based on the model prediction.
2. Bucketing the data into quintiles, such that each quintile has approximately the same volume 
! of exposures.
3. Within each bucket, calculate the actual loss ratio (under the current plan) for risks within that 
! bucket. 
Discuss the lift of the proposed plan compared to the current plan.

!

3.163. (1 point) An actuary is modeling pure premiums, using a GLM with a log ink function.
Deductible relativities have been determined separately, and their effect will be included in the 
GLM via an offset. 
The fitted GLM uses two predictors x1 and x2; β̂0  = 6, β̂1 = 0.1, and β̂2  = -0.2.
Calculate the fitted pure premium for a policy with a deductible relativity of 0.8,
x1 = 13 and x2 = 3.

*3.164.* (1 point) Laurel and Hardy are each fitting GLMs to the same 100 observations.
Laurel proposes using a GLM with 100 parameters.
Hardy proposes using a GLM with one parameter, the overall mean. 
Discuss which if either of their proposals makes sense.
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3.165. (1 point) An actuary, Simon Leroy is modeling private passenger automobile liability 
insurance via a GLM. All of the current rating variables are included in the model; the current 
territory relativities are included via an offset.
Simon adds to the model the number of years a driver has been claims free.
The indicated relativities are:

Relativity Percent of Premiums

0 years claims free 1.50 9%

1 year claims free 1.35 4%

2 years claims free 1.18 5%

3 or more years claims free 1.00 82%
What can you infer about the credibility of a single private passenger driver?

*3.166.* (1 point) An actuary is modeling private passenger automobile insurance.
Both the number of operators listed on the policy and the age of the youngest operator listed on 
the policy will be included in the model. Discuss a potential difficulty with this.

*3.167.* (1.5 points) Compare and contrast AIC and BIC.
What do the authors of Generalized Linear Models for Insurance Rating conclude with respect to 
the building of GLMs for actuarial work?

3.168. (3 points) Answer the following questions about working residuals and GLMs.
(a) (0.5 points) Define working residuals.
(b) (1 point) Fully discuss the main advantage of working residuals.
(c) (0.5 points) Define working weights.
(d) (0.5 points) Briefly discuss the purpose of the working weights.
(e) (0.5 points) List three useful types of plots of working residuals.
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3.169. (1 point) You are given the following double lift chart:

    

Briefly discuss what conclusion you draw and and why.
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*3.170.* (1 point) Below are shown two simple quantile plots, the first for Plan A and the second 
for Plan B.  In each case, the model plan predictions are shown by dots and the actual by o.
Which plan is preferable and why?

!

0

0

0

0

0

1 2 3 4 5
Quintile

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Relativity

!

!

0
0

0

0
0

1 2 3 4 5
Quintile

0.2

0.4

0.6

0.8

1.0

1.2

Relativity

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 434
 



3.171. (1 point) Otherwise similar GLMs have been fit, one using a Gamma Distribution and the 
other using an Inverse Gaussian Distribution. Based on the following histograms of standardized 
deviance residuals which model do you prefer and why.
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3.172. (2 points) You are given the following information about an insurance policy: 
● The probability of a policy renewal, p(X), follows a logistic model with an intercept and 
! one explanatory variable. 
● β0 = 1 
● β1 = 0.31 
Calculate the odds of renewal at x = 8. 

3.173. (3 points) A logistic model was built to predict the probability of a claim being fraudulent. 
Consider the predicted probabilities for the 15 claims below to be a representative sample of the 
total model. 

Claim Number Actual Fraud Indicator Predicted Probability of Fraud
1 N 37%
2 N 46%
3 N 23%
4 N 13%
5 Y 89%
6 N 5%
7 Y 21%
8 N 74%
9 Y 75%

10 Y 69%
11 N 57%
12 Y 54%
13 N 53%
14 N 83%
15 N 49%

a. (1.5 point) Construct confusion matrices for discrimination thresholds of 0.30 and 0.60. 
b. (1.5 points) Plot the Receiver Operating Characteristic (ROC) curve with the discrimination 
! thresholds of 0.30 and 0.60. 
! Label each axis and the coordinates and discrimination threshold of each point on the 
! curve. 

3.174. (1 point) Olaf is an actuary with the Arendelle Insurance Company.
Olaf is revising the classification relativities using a GLM with a log link function.
Recently another actuary Anna had revised the territory relativities.
Olaf with take these territory definitions and relativities as given. 
Discuss how Olaf should make use of offsets in his modeling of classification relativities.
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3.175. (0.75 points) An actuary has split data into training and test groups for a model. 
The chart below shows the relationship between model performance and model complexity. 
Model performance is represented by model error and model complexity is represented by 
degrees of freedom. 

Briefly discuss the optimal balance of complexity and performance.

*3.176.* (2 points) An actuary is analyzing a partial residual plot of the driver age variable.
The plot appears to be non-linear. 
a. (1 point) Briefly describe two approaches that can be used to improve the fit of the driver age 
! variable.
b. (1 point) Briefly describe a downside to each of the two approaches discussed in part a. 
! above.
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3.177. (2 points) You are given the following information for a GLM of customer retention: 
! Response variable ! ! Retention 
! Response distribution ! Binomial 
! Link ! ! ! ! Logit 

Parameter df                β̂

Intercept 1 2.182

Years with Insurer 1

1 0 0.000

>1 1 1.137

Last Rate Change 2

<0% 0 0.000

0%-10% 1 -0.422

>10% 1 -0.901

Calculate the probability of retention for a policy with the insurer for 4 years and with a prior rate 
change of 7%.

3.178. (2 points) An actuary is comparing the output of two generalized linear models to develop 
a new rating plan for personal auto. Model statistics are shown below:

Saturated Model Model A Model B

Log-Likelihood -100 -130 -123

Estimated Dispersion Parameter 0.65 0.61 0.63
● Each model is fit to the same set of 50 data points.
● Model A uses 5 parameters (including an intercept).
● Model A is a nested model of Model B, 
! where Model B has an additional variable for driver age.
● Driver age is fit using 5 bins.
● The critical value to be used from the F-distribution is 2.600.
Using two statistical tests, recommend whether or not driver age should be included in the rating 
plan.
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3.179. (2 points) Your coworker, Clifford Clavin, has fit a GLM using the following model form: 
! g(Y) = β0 + β1 X1 + β2 X2
The fitted parameters were: 

                β̂0 1

                β̂1 2

                β̂2 -5
You know that Cliff used a canonical link function, but do not know which of the following three 
error distribution Cliff used:
I: Gamma 
II: Poisson 
III: Normal
Cliff is currently on vacation and can not be reached; Cliff’s limited notes do not help.
Determine the correct ordering of the three possible models' predicted values at the observed 
point (X1, X2) = (0.50, 0.29).

3.180. (1.25 points) An actuary is planning to add a credit-based insurance score from FIDO to a 
model that estimates the probability of a policy having a claim. The actuary has decided to offset 
all of the current model variables before fitting the new variable.
Given the following:
● The current model (without the FIDO insurance score variable) is a logit-Iink binomial GLM 
! (logistic regression).

● The logit link function is defined as g(µ) = In( µ
1 - µ

).

● The FIDO insurance score is a continuous variable having a value between 1 and 100.
● The current fitted values and FIDO insurance score for three policies as well as regression 
! results from the fit of the FIDO insurance score variable are given below:

Policy Number Fitted Probability Without Insurance Score FIDO Insurance Score

1 2.3% 34

2 11.2% 66

3 4.5% 88

Variable Parameter Estimate

Intercept 1.581

FIDO Insurance Score -0.032
a. (0.5 point)
Calculate the offset term to be used in the regression for each of the three policies above.
b. (0.75 point)
Calculate the revised fitted probability of having a claim for each of the three policies above. 
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3.181. (1 point) A GLM has been fit to some data. 
The following is a plot of binned working residuals versus one of the predictor variables X3:

Briefly discuss what this plot tells one about the appropriateness of the fitted model.

3.182. (3 points) You are given the following data on the percent of likes on a dating app:
Group Men Women

Top 1% 16% 11%

Top 5% 41% 31%

Top 10% 58% 46%

Bottom 50% 4% 8%
For example, the 5% of men with the most likes get 41% of all likes for men.
Draw separate Lorenz curves for men and women.
Do men or women have the larger Gini index?
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3.183. (2.5 points) An actuary creates a generalized linear model (GLM) to estimate commercial 
property claim frequency by occupancy class and amount of insurance (AOI) for sprinklered and 
non-sprinklered risks. Given the following:
● Occupancy class is a categorical variable with four levels: class 1, 2, 3 and 4.
● Sprinklered status is a categorical variable with two levels: sprinklered and non-sprinklered.
● The natural log of AOI, In(AOI), is a continuous variable.
● The log link function is selected.
● An interaction variable is included as In(AOI) for sprinklered and zero otherwise.
● The model results are as follows:

Parameter Coefficient

Intercept -8.200

Occupancy class 2 0.200

Occupancy class 3 0.300

Occupancy class 4 0.500

Sprinklered 0.700

In(AOI) 0.400

Sprinklered: Yes, In(AOI) -0.100
a. (0.75 point) Calculate the ratio of the estimated model frequency of a sprinklered property to 
! that of a non-sprinklered property for AOI = 150,000 and occupancy class 3.
b. (0.5 point) Calculate the intercept term if AOI is centered at the base level of 300,000.
c. (0.5 point) Calculate the coefficient of sprinklered if AOI is centered at the base level 
! of 300,000.
d. (0.75 point)
Briefly describe two advantages of centering variables of a GLM at their base levels.

3.184. (1 point) Model documentation is important; list three purposes.

3.185. (1.5 points) A model has been developed to distinguish legitimate emails from spam.
The following is the confusion matrix resulting from applying this model to some test data:

Predicted ClassPredicted Class

True Class Legitimate Email Spam

Legitimate Email 58.2% 2.5%

Spam 3.0% 36.3%

Determine the specificity and sensitivity of this test.
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3.186. (5 points) An actuary has built two generalized linear models to predict loss costs. 

The data has been sorted based on the ratio: prediction for Model 1
prediction for Model 2

,

and then has been grouped into deciles with approximately the same number of exposures.
The results are shown below:

Decile Actual
Pure Premium

Model 1
Pure Premium

Model 2
Pure Premium

1 $118.88 $109.62 $115.08

2 $141.58 $121.73 $125.95

3 $129.37 $115.13 $117.95

4 $107.00 $117.76 $119.68

5 $117.91 $115.58 $116.57

6 $113.02 $118.84 $119.08

7 $130.21 $121.57 $121.11

8 $123.52 $126.99 $125.70

9 $121.75 $124.94 $121.36

10 $135.65 $134.13 $123.65

Total $123.88 $120.62 $120.61
Construct a double lift chart.

3.187. (0.5 point) A claim fraud GLM has been developed.
Briefly describe how the severity of claims will impact the selection of an appropriate 
discrimination threshold to use together with the model.
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3.188. (1 point) A GLM has been fit to some data. 
The following is a plot of binned working residuals versus the linear predictor in the model:

!

Briefly discuss what this plot tells one about the appropriateness of the fitted model.

3.189. (1 point) List and briefly discuss three characteristics of Natural Cubic Splines.

3.190. (4 points) A GLM has been used to develop an insurance rating plan. 
The results are given below: 

Risk Exposures Model Predicted Pure Premium
(000)

Actual Pure Premium
(000)

1 15 56 60

2 19 30 36

3 21 49 42

4 24 38 49

5 27 43 28

6 29 64 63

7 31 77 79

8 34 52 39
Plot the Lorenz curve for this rating plan. 
Label each axis and the coordinates of each point on the curve.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 443
 



3.191. (1.5 points) The following graphs show two competing generalized linear models (GLMs) 
predictions versus the data used in modeling ("training") and a hold-out sample. 
Assess each of the models.! A = Actual Data.! 1 = Model 1.! ! 2 = Model 2.
Data in each graph has been sorted into equal volume deciles, 
ranked from low to high actual loss.

! !   

!

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 444
 



3.192. (2.5 points) An actuary has fit a GLM using a Poison Distribution with log link function. 
Exposures were used as the weights.
The actuary is creating a plot of working residuals in order to assess the model fit.
The following eight observations will be binned together.
Compute the binned working residual for this bin.

Observed Predicted Exposures

4 3.3 11

3 3.7 9

6 5.5 15

2 4.1 7

5 5.2 12

4 3.4 8

2 2.6 14

4 3.0 10

3.193. (1.5 points) An insurer uses a GLM for classification ratemaking. 
You are given the following data on five insureds.

Insured Actual Loss Cost Loss Cost Predicted 
by the Model Exposures

1 $38,000 $36,000 100

2 $36,000 $42,000 120

3 $52,000 $57,000 130

4 $46,000 $49,000 150

5 $58,000 $51,000 180
Construct a Simple Quantile Plot; sort the data based on predicted pure premium. 

3.194. (1 point) List and briefly discuss two potential drawbacks of using polynomials in GLMs. 

*3.195*. (3 points) A GLM has been fit. 
The ninth response is 0.4, and the corresponding prediction is 0.5.
Determine the ninth working residual for each of the following link functions.
(a) Identity Link Function
(b) Log Link Function,
(c) Logit Link Function.
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3.196. (2 points) Hari Seldon is an actuary. 
Hari was given the task of fitting a GLM in order to model pure premium using a log link function. 
Hari was to take as a given the current deductible relativities and the current territory base rates.

Deductible Credit

500 0 Base

1000 6%

2500 11%

Territory Base Rate

A 400 Base

B 600

C 900

Calculate the appropriate offset that Hari should have used for each combination of deductible 
and territory.

3.197. (1 point) One can use a Tweedie Distribution in a GLM.
Discuss two ways to determine the Tweedie p parameter.

3.198. (2.5 points) The following confusion matrix shows the result from a claim fraud model with 
a discrimination threshold of 40%:

PredictedPredicted

Actual Yes No

Yes 172 90

No 88 302
a. (0.5 point) Calculate the sensitivity and specificity from the above data.
b. (1.5 points) Plot the receiver operating characteristic (ROC) curve with the discrimination 
! threshold of 40%. Label each axis, the coordinates, and the discrimination thresholds of 
! 100%, 40%, and 0% on the curve.
c. (0.5 point)!What is the ROC curve for each of the following two models:
! ! i. A model with no predictive power
! ! ii. A hypothetical "perfect" model
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3.199. (6 points) A GLM has been fit. The seventh observation was given a weight of 60.
The seventh response is 0.8, and the corresponding prediction is 0.7.
Determine the seventh working weight for each of the following cases.
(a) Poison with log link function 
(b) Gamma with log link function 
(c) Tweedie with p = 1.6 and log link function
(d) Normal with identity link function
(e) Bernoulli with logit link function
(f) Inverse Gaussian with inverse link function

3.200. (3 points) An actuary has built two generalized linear models to predict loss costs. 
Output for each model are shown below:

Observation Actual
Loss Cost

Model A
Loss Cost

Model B
Loss Cost Exposures

1 $15,000 $16,000 $18,000 50

2 $20,000 $25,000 $22,000 70

3 $42,000 $31,000 $37,000 80

4 $44,000 $48,000 $39,000 100

5 $39,000 $38,000 $41,000 140
Construct a double lift chart.

3.201. (2 points) You have completed a modeling project.
(a) Many people may have questions about this model. List two types of such people external to 
your organization and two types of such people internal to your organization.
(b) List four features your documentation of your model should have.

3.202. (2 points) A test to detect antibodies to a particular virus has a 90% specificity and 95% 
sensitivity. This test is applied a population of 1000 people, of whom 20% actually have 
antibodies to this virus (and have thus been exposed to this virus.) 
What are the expected results of applying this test?
Show the resulting confusion matrix.
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3.203. (1 point) A GLM has been fit to some data. 
The following is a plot of binned working residuals versus the weight variable used in the model:

Briefly discuss what this plot tells one about the appropriateness of the fitted model.

3.204. (2 points) 2% of people of a certain age have a particular type of cancer.
A test for this type of cancer has a sensitivity of 95% and a specificity of 90%.
(a) If a person of this age tests positive for this type of cancer, what is the probability that they 
! have this type of cancer?
(b) If a person of this age tests negative for this type of cancer, what is the probability that they 
! do not have this type of cancer?

3.205. (3 points) For a population, the bottom 60% earn 30% of the income.
Using only this information, determine the Gini Index. 

3.206. (9, 11/03, Q.25) (2 points)
a. (1 point) Explain why one-way analysis of risk classification relativities can produce indicated 
relativities that are inaccurate and inconsistent with the data. 
b. (1 point) Describe an approach to calculating risk classification relativities that would reduce 
the error produced by a one-way analysis. 

3.207. (9, 11/06, Q.5) (4 points) 
a. (3 points) Compare the random component, the systematic component, and the link functions 
of a linear model to those of a generalized linear model. 
b. (1 point) Describe two reasons why the assumptions underlying linear models are difficult to 
guarantee in application. 
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3.208. (9, 11/07, Q.4a) (1 point) There are a variety of methods available to a ratemaking 
actuary when determining classification rates. 
Compare the Generalized Linear Model to the Classical Linear Model with respect to the 
following: 
! i. ! The distribution of the response variable. 
! ii. ! The relationship between the mean and variance of the response variable. 

3.209. (9, 11/08, Q.3) (2 points) When using a Generalized Linear Model one of the concerns of 
which the practitioner must be aware is the presence of aliasing within the model. 
a. (1 point) Discuss the two types of aliasing and provide an example of how each can arise in a 
model. 
b. (1 point) An actuary is using a Generalized Linear Model to determine possible interactions 
between pure premiums. While reviewing the model, the actuary observes the following pure 
premiums for liability coverage: 
! ! !

Liability Pure PremiumLiability Pure PremiumLiability Pure PremiumLiability Pure Premium

Vehicle SizeVehicle SizeVehicle Size

Territory Small Medium Large

North 100 150 250

South 80 110 290

East 90 170 200

West 180 260 540
Assuming equal exposure distribution across all combinations of territory and vehicle size, 
demonstrate how aliasing can be used to exclude a level from either the territory or the vehicle 
size variable. 

3.210. (2 points) Use the information in the previous question, 9, 11/08, Q.3.
Take North and Medium as the base levels.
Specify the following structural components of a generalized linear model: 
Definition of Variables, Design matrix, Vector of responses, Vector of model parameters.
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3.211. (9, 11/09, Q.3) (3 points) Consider a simple private passenger auto classification system 
that has two rating variables: territory (urban or rural) and gender (male or female). 
The observed average claim severities are: 

Gender Urban Rural

Male $400 $250

Female $200 $100
Y, the response variable, is the average claim severity. Male (x1), Female (x2), Urban (x3) and 
Rural (x4) are the 4 covariates. A uniquely defined model is: 
! Y = β1X1 + β2X2 + β3X3 + e.
a. (2 points) Using the classical linear model, derive the equations to solve for the parameters 
β1, β2 and β3 using the sum of squared errors. (Do NOT solve the equations.) 
b. (1 point) Briefly describe two underlying assumptions of the classical linear model. 
Explain why the model may not be able to guarantee these assumptions. 

3.212. (9 points) Use the information in the previous question, 9, 11/09, Q.3.
As per the exam question, use the following variables: Male (X1), Female (X2), Urban (X3).
a. (2 points) Specify the following structural components of a generalized linear model: 
Design matrix, Vector of responses, Vector of model parameters.
b. (2 points) Determine the equations that would need to be solved in order to fit the model.
Assume a Gamma Distribution and the identity link function.
Assume equal exposures for each cell. 
c. (2 points) Determine the equations that would need to be solved in order to fit the model.
Assume a Gamma Distribution and the inverse link function.
Assume equal exposures for each cell. 
d. (3 points) Determine the equations that would need to be solved in order to fit the model.
Assume a Inverse Gaussian Distribution and the squared inverse link function.
Assume equal exposures for each cell. 

For the Inverse Gaussian : f(x) = θ
2π

 
exp[-

θ  x
µ

 - 1⎛
⎝⎜

⎞
⎠⎟

2

2x
 ]

x1.5 , mean = µ, variance = µ3 / θ.

3.213. (9, 11/10, Q.3) (3.5 points)
The following chart represents claim frequencies for a commercial auto book of business: 

Claim Frequencies (1,000 Vehicle-Years)Claim Frequencies (1,000 Vehicle-Years)Claim Frequencies (1,000 Vehicle-Years)
Private Passenger Light Truck Medium Truck

Territory A 10 12 20
Territory B 5 10 18

a. (2 points) Complete the first step in solving a generalized linear model by specifying the 
design matrix and vector of beta parameters. 
b. (0.5 point) For each of the Poisson and gamma error structures, describe the relationship 
between the variance and the expected value and how these relationships differ. 
c. (1 point) Once the link function and error structure have been selected, describe the process 
to determine the final beta parameters.
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3.214. (8, 11/11, Q.3) (1.5 points) An actuary is considering performing a one-way analysis to 
provide pricing guidance for an insurance company's personal auto book of business. 
a. (0.5 point) Briefly describe two shortcomings associated with one-way analyses. 
b. (1 point) Provide an example of how each shortcoming in part a. above may arise. 

3.215. (8, 11/12, Q.2) (2.25 points) A private passenger auto insurance company orders a report 
whenever it writes a policy, showing what other insurance the policyholder has purchased. The 
following table shows claim frequencies (per 100 earned car-years) for bodily injury liability 
coverage, split by whether the policyholder has a homeowners policy and whether the 
policyholder had a prior auto policy: 

Homeowners PolicyHomeowners Policy
Prior Auto Policy Yes No

Yes 3 5
No 8 12

The table does not include the experience of policyholders with missing data. 
a. (1.25 points) Specify the following structural components of a generalized linear model that 
estimates frequencies for this book of business. 
i. Error distribution
ii. Link function 
iii. Vector of responses 
iv. Vector of model parameters 
v. Design matrix 
b. (1 point) Describe how the missing data may cause problems for the company in developing 
the model, and suggest a solution. 
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3.216. (8, 11/12, Q.4) (1.75 points) An actuary has historical information relating to customer 
retention. A logistic model was used to estimate the probability of renewal for a given customer. 
The two variables determined to be significant were the size of rate change and number of 
phone calls the insured made to the company. The parameter estimates were determined to be 
as follows: 

Rate Change Parameter Estimate
Decrease to 3.9% increase 0.3323

4.0% to 6.9% increase 0
Increase of 7.0% or more -0.4172

Number of Phone Calls in Past Year Parameter Estimate
0 0
1 -0.2128

2+ -0.4239

Intercept Term 1.793
a. (0.75 point) Calculate the renewal probability for a customer who has a 7% rate increase and 
called the company twice in the past year. 
b. (1 point) The company needs policyholder retention to be above 78% to maintain growth and 
expense ratio goals. A possible strategy is to add the number of phone calls to the classification 
plan and use the model results to determine the rate increase. 
Construct an argument either in favor of or against the strategy above, describing two reasons 
for that position. 

3.217. (8, 11/13, Q.2) (3.5 points) 
An actuary at a private passenger auto insurance company wishes to use a generalized linear 
model to create an auto frequency model using the data below.

Number of ClaimsNumber of Claims
Gender Territory A Territory B

Male 700 600
Female 400 420

Number of ExposuresNumber of Exposures
Gender Territory A Territory B

Male 1,400 1,000
Female 1,000 1,200

The model will include three parameters: β1, β2, β3, where β1 is the average frequency for
males, β2 is the average frequency for Territory A, and β3 is an intercept.
a. (0.5 point) Define the design matrix [X].
b. (0.25 point) Define the vector of responses [Y].
c. (2.25 points) Assuming β3 = 0.35, solve a generalized linear model with a normal error 
! structure and identity link function for β1.
d. (0.5 point) The actuary determines that the analysis results would be improved by assuming 
! a Poisson error structure with a log link function. 
! Identify two reasons this structure may better suit this data.
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3.218. (8, 11/14, Q.3) (2 points) The random component of a generalized linear model must 
come from the exponential family of distributions. The variance of a distribution from the 

exponential family can be expressed using the following formula: Var(Yi) = φ V(µi)
ωi

a. (0.5 point) Define the parameters φ and ωi in the formula above. 
b. (1 point) For each of the data sets below, identify the error distribution that should be used to 
model the data. Briefly explain why that error distribution is appropriate. 
i. ! Severity 
ii, ! Policy Renewal Retention 
c. (0.5 point) For each of the error distributions in part b. above, provide an example of how wi 
should be assigned for the type of data being modeled. 

3.219. (CAS S Sample Exam 2015, Q.4) (2 points)
An actuary wants to estimate the probability of a home insurance policy having a claim by using 
a logistic regression model. He has the following pieces of information from 1,000 historical 
policies: 
● Cost of the home, in $000s 
● Age of the home, in years 
● Whether or not there was a claim on the policy 

The actuary is considering a number of different model specifications. Below are the models he 
is considering along with the calculated scaled deviance of each model: 

Model # Included Variables Scaled Deviance

1 Intercept + Cost 1085.0

2 Intercept + Cost + Age 1084.8

3 Intercept + Cost + (Cost * Age) 1083.0

4 Intercept + Cost + Cost2 + Cost3 1081.9

5 Intercept + Cost + Cost2 + Cost3 + Cost4 1081.6
Determine the optimal model using the Bayesian Information Criterion. 
Note: I have rewritten this past exam question, in order to match the syllabus of your exam.

3.220. (2 points) In the previous question, determine the optimal model using instead
the Akaike Information Criterion. 
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3.221. (CAS S, 11/15, Q.32) (2 points)
A GLM is used to model claim size. You are given the following information about the model: 
● Claim size follows a Gamma distribution. 
● Log is the selected link function. 
● The dispersion parameter f is estimated to be 2. 
● Model Output: 

Variable                β̂
(Intercept) 2.32

Location - Urban 0.00
Location - Rural -0.64
Gender - Female 0.00

Gender - Male 0.76
Calculate the variance of the predicted claim size for a rural male. 

3.222. (CAS S, 11/15, Q.33) (2 points)  
You are given the following output from a GLM to estimate the probability of a claim: 

� 

• Distribution selected is Binomial. 

� 

• Link selected is Logit. 
Parameter β
Intercept -1.485

Vehicle Body
Coupe -0.881

Roadster -1.047
Sedan -1.175

Station wagon -1.083
Truck -1.118
Utility -1.330

Driver's Gender
Male -0.025

Area
B 0.094
C 0.037
D -0.101

Calculate the estimated probability of a claim for: 
● Driver Gender: Female 
● Vehicle Body: Sedan 
● Area: D 
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3.223. (CAS S, 11/15, Q.34) (1 point) 
You are given the following information for a model of vehicle claim counts by policy: 
● The response distribution is Poisson and the model has a log link function. 
● The model uses two categorical explanatory variables: Number of Youthful Drivers and 
! Number of Adult Drivers. 
● The parameters of the model are given: 

Parameter Degrees of Freedom              β̂

Intercept 1 -2.663
Number of Youthful Drivers

0
1 1 0.132

Number of Adult Drivers
1
2 1 -0.031

Calculate the predicted claim count for a policy with one adult driver and one youthful driver.

3.224. (CAS S, 11/15, Q.35) (2 points) 
You are given a GLM of liability claim size with the following potential explanatory variables only: 
● Vehicle price, which is a continuous variable modeled with a third order polynomial 
● Average driver age, which is a continuous variable modeled with a first order polynomial 
● Number of drivers, which is a categorical variable with four levels 
● Gender, which is a categorical variable with two levels 
● There is only one interaction in the model, which is between gender and average driver age. 
Determine the maximum number of parameters in this model. 

3.225. (CAS S, 11/15, Q.36) (2 points) You are given the following information for two potential 
logistic models used to predict the occurrence of a claim: 
● Model 1: (AlC = 262.68) 

Parameter                   β̂

(Intercept) -3.264
Vehicle Value ($000s) 0.212

Gender-Female 0.000
Gender-Male 0.727

● Model 2: (AlC = 263.39) 

Parameter                    β̂

(Intercept) -2.894
Gender-Female 0.000

Gender-Male 0.727
● AIC is used to select the most appropriate model. 
Calculate the probability of a claim for a male policyholder with a vehicle valued $12,000 by 
using the selected model. 
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3.226. (CAS S, 11/15, Q.38) (2 points) 
You are testing the addition of a new categorical variable into an existing GLM. 
You are given the following information: 
● The change in model scaled deviance after adding the new variable is -53. 
● The change in AIC after adding the new variable is -47. 
● The change in BIC after adding the new variable is -32. 
● Prior to adding the new variable, the model had 15 parameters. 
Calculate the number of observations in the model. 
Note: I have rewritten this past exam question, in order to match the syllabus of your exam.

3.227. (8, 11/15, Q.3) (2.5 points) An actuary is considering using a generalized linear model to 
estimate the expected frequency of a recently introduced insurance product. 
Given the following assumptions: 
● The expected frequency for a risk is assumed to vary by state and gender. 
● A log link function is used. 
● A Poisson error structure is used. 
● The likelihood function of a Poisson is 
! l(y; µ) = ln f(yi; µi)∑  = {-µi + yi ln[µi] - ln[yi!]} ∑
● β1 is the effect of gender = Male. 
● β2 is the effect of gender = Female. 
● β3 is the effect of State = State A. 

Claim FrequencyClaim Frequency

State A State B

Male 0.0920 0.0267

Female 0.1500 0.0500

Given that β3 = 1.149, determine the expected frequency of a male risk in State A. 
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3.228. (CAS S, 5/16, Q.29) (2 points) You are given the following information for a fitted GLM: 
!

Response variable Occurrence of Accidents

Response distribution Binomial

Link Logit

Parameter df             β̂

Intercept 1 x
Driver's Age 2

1 1 0.288
2 1 0.064
3 0 0

Area 2
A 1 -0.036
B 1 0.053
C 0 0

Vehicle Body 2
Bus 1 1.136

Other 1 -0.371
Sedan 0 0

The probability of a driver in age group 2, from area C and with vehicle body type Other, 
having an accident is 0.22. 
Calculate the odds ratio of the driver in age group 3, from area C and with vehicle body type 
Sedan having an accident. 

3.229. (CAS S, 5/16, Q.30) (2 points) You are given the following information for a fitted GLM: 
Response variable Occurrence of Accidents

Response distribution Binomial
Link Logit

Parameter df              β̂ se

Intercept 1 -2.358 0.048
Area 2

Suburban 0 0.000
Urban 1 0.905 0.062
Rural 1 -1.129 0.151

Calculate the modeled probability of an Urban driver having an accident. 
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3.230. (CAS S, 5/16, Q.31) (2 points) You are given the following information for a fitted GLM: 
Response variable Claim size

Response distribution Gamma
Link Log

Estimated alpha 1

Parameter df             β̂

Intercept 1 2.100

Zone 4

1 1 7.678

2 1 4.227

3 1 1.336

4 0 0.000

5 1 1.734

Vehicle Class 6

Convertible 1 1.200

Coupe 1 1.300

Sedan 0 0.000

Truck 1 1.406

Minivan 1 1.875

Station wagon 1 2.000

Utility 1 2.500

Driver Age 2

Youth 1 2.000

Middle age 0 0.000

Old 1 1.800

Calculate the predicted claim size for an observation from Zone 3, 
with Vehicle Class Truck and Driver Age Old. 
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3.231. (CAS S, 5/16, Q.32) (2 points) You are given the following information for a fitted GLM: 
Response variable Claim size

Response distribution Gamma

Link Log

Estimated φ 1
 

Parameter df                 β̂

Intercept 1 2.100

Zone 4

1 1 7.678

2 1 4.227

3 1 1.336

4 0 0.000

5 1 1.734

Vehicle Class 6

Convertible 1 1.200

Coupe 1 1.300

Sedan 0 0.000

Truck 1 1.406

Minivan 1 1.875

Station wagon 1 2.000

Utility 1 2.500

Driver Age 2

Youth 1 2.000

Middle age 0 0.000

Old 1 1.800

Calculate the variance of a claim size for an observation from Zone 4, 
with Vehicle Class Sedan and Driver Age Middle age 
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3.232. (CAS S, 5/16, Q.33) (2 points)
You are given the following information for a GLM of customer retention: 

Response variable Retention

Response distribution Binomial

Link Logit

Parameter df           β̂

Intercept 1 1.530

Number of Drivers 1

1 0 0.000

>1 1 0.735

Last Rate Change 2

<0% 0 0.000

0%-10% 1 -0.031

>10% 1 -0.372

Calculate the probability of retention for a policy with 3 drivers and a prior rate change of 5%. 

3.233. (CAS S, 5/16, Q.35) (2 points) You are given the following information about three 
candidates for a Poisson frequency GLM on a group of condominium policies:

Model Variables in the Model DF Log
Likelihood AIC BIC

1 Risk Class 5 -47,704 95,418 95,473.61182

2 Risk Class + Region -47,495

3 Risk Class + Region + Claim Indicator 10 -47,365 94,750

● Insureds are from one of five Risk Class: A, B, C, D, E 
● Condominium policies are located in several regions 
● Claim Indicator is either Yes or No 
● All models are built on the same data 
Calculate the absolute difference between the AIC and the BIC for Model 2. 
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3.234. (CAS S, 5/16, Q.36) (2 points) You are given the following two graphs 
comparing the fitted values to the residuals of two different linear models: 

 

Determine which of the following statements are true. 
! I. ! Graph 1 indicates the data is homoscedastic 
! II. . ! Graph 1 indicates the data is heteroskedastic (a lack of homoscedasticity)
! III. ! Graph 2 indicates the data is non-normal 

3.235. (CAS S, 5/16, Q.37) (2 points) 
Determine which of the following GLM selection considerations is true. 
A. The model with the largest AIC is always the best model in model selection process. 
B. The model with the largest BIC is always the best model in model selection process. 
C. The model with the largest scaled deviance is always the best model 
! in model selection process. 
D. Other things equal, when the number of observations > 1000, AIC penalizes more for 
! the number of parameters used in the model than BIC. 
E. Other things equal, when number of observations > 1000, BIC penalizes more for 
! the number of parameters used in the model than AIC.
Note: I have rewritten this past exam question, in order to match the syllabus of your exam. 
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3.236. (CAS S, 5/16, Q.38) (2 points) You are testing the addition of a new categorical variable 
into an existing GLM, and are given the following information: 

� 

• A is the change in AIC and B is the change in BIC after adding the new variable. 

� 

• B > A + 25 

� 

• There are 1500 observations in the model. 
Calculate the minimum possible number of levels in the new categorical variable. 

3.237. (CAS S, 5/16, Q.41) (1 point) A Poisson regression model with log link is used to 
estimate the number of diabetes deaths. The parameter estimates for the model are: 

Response variable Number of Diabetes Deaths

Response distribution Poisson

Link Log

Parameter df             β̂ p-value

Intercept 1 -15.000 < 0.0001

Gender: Female 1 -1.200 < 0.0001

Gender: Male 1 0.000

Age 1 0.150 < 0.0001

Age2 1 0.004 < 0.0001

Age

� 

×Gender: Female 1 0.012 < 0.0001

Age

� 

×Gender: Male 0 0.000

Calculate the expected number of deaths for a population of 100,000 females age 25. 

3.238. (8, 11/16, Q.4) (3 points) An actuary is conducting a generalized linear model (GLM) 
analysis on historical personal automobile data in order to develop a rating plan. 
a. (1.5 points) 
! Argue against the following factors being included as predictors in the actuary's GLM 
! analysis: 
! i. ! Limit of liability. 
! ii. ! Number of coverage changes during the current policy period. 
! iii. ! ZIP code of the garaging location of the automobile. 
b. (1 point) The actuary is modeling pure premium with a log-link function and a Tweedie error 
! distribution (1 < p < 2). Provide two arguments against the inclusion of deductible as
!  a predictor in the actuary's GLM analysis. 
c. (0.5 point) Other than including deductible as a predictor in the GLM, describe how to
! determine deductible relativities and how such relativities can be incorporated in a GLM. 
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3.239. (8, 11/16, Q.5) (2.25 points) 
A GLM has been used to develop an insurance rating plan. 
The results are given below: 

Risk Model Predicted Loss Actual Loss

1 2,000 2,050

2 500 220

3 1,500 1,480

4 800 850

5 200 400
a. (1.75 points) Plot the Lorenz curve for this rating plan. 
! Label each axis and the coordinates of each point on the curve. 
b. (0.5 point) Briefly describe how the Gini index is calculated and what the Gini index measures 
! when applied to an insurance rating program. Do not calculate the Gini index. 

3.240. (8, 11/16, Q.6) (2.5 points) An actuary has constructed a three-variable Tweedie GLM 
with a log-link function to estimate loss ratios for commercial property new business. 
The actuary wants to create a second model for renewal business that will include all of the 
variables from the new business model, plus a variable for the prior year claim count. 
The actuary requires that the coefficients of the variables: Average Building Age, 
Iog(Manual Premium), and Location Count, are consistent between the new and renewal 
models. 
The fitted new business model parameters are as follows: 

Variable Name Estimate

intercept 0.910

Average Building Age (Years) age 0.013

log(Manual Premium) logprem -0.187

Location Count loccnt 0.062

a. (0.75 point) Calculate the modeled loss ratio for a new business policy with a manual 
! premium of $25,000, an average building age of four years, and having eight locations. 
b. (0.75 point) Briefly describe how to produce the renewal business model, and specify 
! the resulting equation for the renewal business modeled loss ratio. 
c. (1 point) Identify and briefly describe two techniques that the actuary can use to assess 
! the stability of the new variable in the renewal business model. 
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3.241. (8, 11/16, Q.7) (1.5 points) A company is considering modifying its rating plan to include 
factors by age group. Below are statistics for the base model and for the new model. 

Statistic Base Model New Model
Loglikelihood -750 -737.5

Scaled Deviance 500 475
Parameters 10 15
Data points 1,000,000 1,000,000

a. (1 point) Calculate the Akaike Information Criterion (AIC) and 
! the Bayesian Information Criterion (BIC) for both models. 
b. (0.25 point) Explain whether AIC or BIC is a more reliable test statistic as an indicator of 
! whether to adopt the new model. 
c. (0.25 point) Recommend and briefly justify whether to adopt the new model. 

3.242. (8, 11/17, Q.4) (1.75 points) An actuary has split data into training and test groups for a 
model. The chart below shows the relationship between model performance and model 
complexity. Model performance is represented by model error and model complexity is 
represented by degrees of freedom. 

a. (0.5 point) Briefly describe two reasons for splitting modeling data into training 
! and test groups. 
b. (0.75 point) Briefly describe whether each of the following model iterations has an optimal 
! balance of complexity and performance. 
! i. Model iteration 1: 10 degrees of freedom 
! ii. Model iteration 2: 60 degrees of freedom 
! iii. Model iteration 3: 100 degrees of freedom 
c. (0.5 points) Identify and briefly describe one situation where it is an advantage to split the data 
! by time rather than by random assignment. 
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3.243. (8, 11/17, Q.5) (1.75 points) An analyst has fit several different variations of a logistic 
GLM to a dataset containing 1,000 records of fraudulent claims and 9,000 records of legitimate 
claims. 
For each model variation listed below, draw a quintile plot based on the training data. 
Label the axes and identify each data series. 
i. A saturated model 
ii. A null model 
iii. A model that could be used in practice 

3.244. (8, 11/17, Q.6) (3.5 points) A logistic model was built to predict the probability of a claim 
being fraudulent. Consider the predicted probabilities for the 10 claims below to be a 
representative sample of the total model. 

Claim Number Actual Fraud Indicator Predicted Probability of Fraud

1 Y 11%

2 N 23%

3 N 15%

4 N 70%

5 Y 91%

6 Y 30%

7 N 11%

8 Y 75%

9 N 58%

10 N 27%

a. (1 point) Construct confusion matrices for discrimination thresholds of 0.50 and 0.25. 
b. (1.5 points) Plot the Receiver Operating Characteristic (ROC) curve with the discrimination 
! thresholds of 0.50 and 0.25. 
! Label each axis and the coordinates and discrimination threshold of each point on the 
! curve. 
c. (0.5 point) Describe an advantage and a disadvantage of selecting a discrimination threshold 
! of 0.25 instead of 0.50. 
d. (0.5 point) Describe whether a discrimination threshold of 0.25 or 0.50 is more appropriate for 
! a line of business with low frequency and high severity.
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3.245. (MAS-1, 5/18, Q.25) (2.2 points) 
Three separate GLMs are fit using the following model form: g(Y) = β0 + β1 X1 + β2 X2 
The following error distributions were used for the three GLMs. 
Each model also used their canonical link functions: 
! Model I: gamma 
! Model II: Poisson 
! Model III: binomial 
When fit to the data, all three models resulted in the same parameter estimates: 

                β̂0 2.0

                β̂1 1.0

                β̂2 -1.0
Determine the correct ordering of the models' predicted values at observed point 
(X1, X2) = (2, 1).

3.246. (MAS-1, 5/18, Q.39) (2.2 points) A GLM was used to estimate the expected losses per 
customer across gender and territory. The following information is provided: 
● The link function selected is log 
● Q is the base level for Territory 
● Male is the base level for Gender 
● Interaction terms are included in the model 
The GLM produced the following predicted values for expected loss per customer: 

TerritoryTerritory

Gender Q R

Male 148 545

Female 446 4,024
Calculate the estimated beta for the interaction of Territory R and Female. 

3.247. (MAS-1, 5/18, Q.27) (2.2 points)  
You are given the following information about an insurance policy: 
● The probability of a policy renewal, p(X), follows a logistic model with an intercept and one 
! explanatory variable. 
● β0 = 5 
● β1 = -0.65 
Calculate the odds of renewal at x = 5. 
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3.248. (8, 11/18, Q.5) (1.5 points)
An actuary is analyzing a partial residual plot of the driver age variable, which is shown below:

a. (1 point)
Adding polynomial terms is one approach to address the non-linearity in the driver age variable.
Briefly describe two other alternative approaches and how they can be used to improve the fit of 
the driver age variable shown above.
b. (0.5 point) Briefly describe a downside to each of the two alternative approaches 
recommended in part a. above.

3.249. (8, 11/18, Q.6) (2.5 points) An actuary is comparing the output of two generalized linear 
models to develop a new rating plan for personal auto. Model statistics are shown below:

Saturated Model Model A Model B

Log-Likelihood -1,000 -1,500 -1,465

Estimated Dispersion Parameter 1.75 1.75 1.75

● Model A is a nested model of Model B, 
! where Model B has an additional variable for driver age.
● Driver age is fit using a second-order polynomial.
● The critical value to be used from the F-distribution is 3.183.
a. (2 points) Using two statistical tests, recommend whether or not driver age should be included 
! in the rating plan.
b. (0.5 point) Describe why the deviance statistic alone should not be used to assess model fit.
Note: I have slightly rewritten this past exam question.
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3.250. (8, 11/18, Q.7) (2.5 points) An actuary is planning to add a credit-based insurance score 
to a model that estimates the probability of a policy having a claim. The actuary has decided to 
offset all of the current model variables before fitting the new variable.
Given the following:
● The current model (without the insurance score variable) is a logit-Iink binomial GLM 
! (logistic regression).

● The logit link function is defined as g(µ) = In( µ
1 - µ

)

● The insurance score is a continuous variable having a value between 1 and 100.
● The current fitted values and insurance score for three policies as well as regression results 
! from the fit of the insurance score variable are given below:

Policy Number Fitted Probability Without Insurance Score Insurance Score

1 1.3% 78

2 20.3% 92

3 2.5% 35

Variable Parameter Estimate

Intercept 1.250

Insurance Score -0.020
a. (0.5 point)
Calculate the offset term to be used in the regression for each of the three policies above.
b. (0.75 point)
Calculate the revised fitted probability of having a claim for each of the three policies above.
c. (0.5 point) Identify the range of:
! i. the logit function
! ii. the logistic function
d. (0.25 point) Briefly explain why logistic regression is often used to model probabilities.
e. (0.5 point) Identify and briefly describe one situation in which the use of an offset is preferable 
! to (re)fitting all variables.
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3.251. (5, 5/19, Q.9) (1 point) 
The following graphs show two competing generalized linear models' (GLMs) predictions versus 
the data used in modeling ("training") and a hold-out sample. Data in each graph has been 
sorted into equal volume deciles, ranked from low to high actual loss.

Assess each of the models.
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3.252. (8, 11/19, Q.2) (2.75 points) An actuary has built two generalized linear models to predict 
loss costs. Management has requested a series of model validation plots to demonstrate the 
appropriateness of each of the new models. 
Output for each model, simple quintile plots, and a double lift plot are shown below:

Observation Actual Loss
Cost

Model A
Loss Cost

Model B
Loss Cost

Earned
Premium

1 1,500 825 900 1,800

2 675 765 800 1,450

3 0 615 350 2,375

4 2,250 900 3,000 2,625

5 5,000 1,050 3,700 4,875

! ! ! ! CONTINUED ON NEXT PAGE
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Given the following:
● The actuary has already provided management with the simple quintile plots and the double 
! lift chart shown above.
● The company has implemented several segmented rate changes over the last three years.
a. (1 point) For each model, provide a loss ratio plot that management can use to assess lift. 
! Identify the basis of sorting the data.
b. (0.75 point) Briefly describe one drawback of each type of model validation plot that the 
! actuary has provided to management, including the plot produced in part a. above.
c. (1 point) Using all three types of model validation plots provided to management, recommend 
! which model should be implemented. Do not perform any calculations.

3.253. (8, 11/19, Q.5) (2.75 points) The following confusion matrix shows the result from a claim 
fraud model with a discrimination threshold of 25%:

PredictedPredicted

Actual Yes No

Yes 72 162

No 63 1203
a. (0.5 point) Identify a link function that can be used for a generalized linear model that has 
! a binary target variable and briefly explain why this link function is appropriate.
b. (0.5 point) Calculate the sensitivity and specificity from the above data.
c. (1.5 points) Plot the receiver operating characteristic (ROC) curve with the discrimination 
! threshold of 25%. Label each axis, the coordinates, and the discrimination thresholds of 
! 100%, 25%, and 0% on the curve.
! In addition, plot the ROC curve for each of the following two models:
! ! i. A model with no predictive power
! ! ii. A hypothetical "perfect" model
d. (0.25 point)
Briefly describe how the severity of claims will impact the selection of the model threshold.
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3.254. (8, 11/19, Q.6) (2 points) An actuary creates a generalized linear model (GLM) to 
estimate commercial property claim frequency by occupancy class and amount of insurance 
(AOI) for sprinklered and non-sprinklered risks. Given the following:
● Occupancy class is a categorical variable with four levels: class 1, 2, 3 and 4.
● Sprinklered status is a categorical variable with two levels: sprinklered and non-sprinklered.
● The natural log of AOI, In(AOI), is a continuous variable.
● The log link function is selected.
● An interaction variable is included as In(AOI) for sprinklered and zero otherwise.
● The model results are as follows:

Parameter Coefficient

Intercept -8.4607

Occupancy class 2 0.2714

Occupancy class 3 0.3620

Occupancy class 4 0.0395

Sprinklered 0.7228

In(AOI) 0.4311

Sprinklered: Yes, In(AOI) -0.0960

a. (0.75 point) Calculate the ratio of the estimated model frequency of a sprinklered property to 
! that of a non-sprinklered property for AOI = 200,000 and occupancy class 2.
b. (0.75 point) Calculate the intercept term if AOI is centered at the base level of 200,000.
c. (0.5 point)
Briefly describe two advantages of centering variables of a GLM at their base levels.
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Solutions:

3.1.  Ignoring the loglikelihood of the saturated model, which is a constant,
AIC = Scaled Deviance + (number of parameters)(2).
For example, AIC = 335.6 + (6)(2) = 347.6.

Model Number of Parameters Scaled Deviance AIC

A 6 335.60 347.60
B 8 331.90 347.90
C 10 325.20 345.20
D 12 321.40 345.40
E 14 317.00 345.00

Since AIC is smallest for model E, model E is preferred.

3.2.  When using categorical variables, it is important to set the base level to be one with 
populous data, so that our measures of significance will be most accurate. 
By choosing the base level to be one with lots of data, the estimates of the coefficients for the 
non-base levels are more stable.

3.3.  This allows the scale of the predictors to match the scale of the entity they are linearly
predicting, which in the case of a log link is the log of the mean of the outcome.
When a logged continuous predictor is placed in a log link model, the resulting coefficient 
becomes a power transform of the original variable. The coefficient b1 becomes an exponent 
applied to the original variable x1.
Including continuous predictors in their logged form allows a log link GLM flexibility in fitting the 
appropriate response curve. On the other hand, if the variable x is not logged, the response 
curve for any positive coefficient will always have the same basic shape: exponential growth, 
that is, increasing at an increasing rate.

3.4.  Frequently, the dataset going into a GLM will include records that represent the averages of 
the outcomes of groups of similar risks rather than the outcomes of individual risks. 
In such instances, it is intuitive that records that represent a greater number of risks should carry 
more weight in the estimation of the model coefficients, as their outcome values are based on 
more data. GLMs accommodate that by allowing the user to include a weight variable, which 
specifies the weight given to each record in the estimation process.
The weight is the number of exposures for frequency or pure premium models.
For severity models, the weight is the number of claims.
The weight variable, usually denoted ω, formally works its way into the math of GLMs as 

a modification to the assumed variance: Var[yi] = φ V(µi)
ωi

.
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3.5.  Determining accurate estimates of relativities in the presence of moderately correlated 
rating variables is a primary strength of GLMs versus univariate analyses. Unlike univariate 
methods, the GLM will be able to sort out each variable’s unique effect on the outcome, as 
distinct from the effect of any other variable that may correlate with it, thereby ensuring that no 
information is double-counted.

3.6.  exp[0.4] - 1 = 49.2%.
Comment: For a logistic model: Odds = µ / (1 - µ).

3.7.  Both are discrete distributions used to model frequency. 
Both have support from zero to infinity. Both have φ = 1.
The Negative Binomial Distribution has an additional parameter k > 0, called the overdispersion 
parameter.
The Poisson Distribution has variance function V(µ) = µ, while the Negative Binomial Distribution 
has variance function V(µ) = µ(1 + κµ). Thus the Negative Binomial Distribution has a variance 
greater than its mean, while the Poisson has a variance equal to its mean.
The Negative Binomial Distribution has a heavier righthand tail than the Poisson Distribution.
Comment: One way a Negative Binomial Distribution can arise is as a Gamma mixture of 
Poissons.

3.8.  Where two predictors are perfectly correlated, they are said to be aliased, and the GLM will 
not have a unique solution.

3.9.  1. GLMs assign full credibility to the data. 
2. GLMs assume that the randomness of outcomes are uncorrelated. 

3.10.  “Continuity in the Estimates is Not Guaranteed. Allowing each interval to move freely 
may not always be a good thing. The ordinal property of the levels of the binned variable have 
no meaning in the GLM; there is no way to force the GLM to have the estimates behave in any 
continuous fashion, and each estimate is derived independently of the others. Therefore, there 
is a risk that some estimates will be inconsistent with others due to random noise.”
Variation within Intervals is Ignored. Since each bin is assigned a single estimate, the GLM 
ignores any variation that may exist within the bins.
Comment: See Section 5.4.2 of Generalized Linear Models for Insurance Rating. 

3.11.  The fitted parameter(s) are the same, while the standard errors are multiplied by 
7.9435 .

The standard error of β̂1 is: 0.00120 7.9435  = 0.00338.
95% confidence interval for β1: 0.02085 ± (1.96) (0.00338) = 0.02085 ± 0.00662.
Comment: One could instead use: 0.02085 ± (2) (0.00338) = 0.02085 ± 0.00676.
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3.12.  The Tweedie Distribution is an (linear) exponential family, 
used for modeling pure premiums.
Besides the usual parameters µ and φ, the Tweedie Distribution has a power parameter p.
The variance function for Tweedie is V(µ) = µp.  For use in GLMs we usually take 1 < p < 2.
The Tweedie Distribution can be represented as a compound Poisson with a Gamma severity.
One rather interesting characteristic of the Tweedie distribution is that several of the other 
exponential family distributions are in fact special cases of Tweedie, dependent on the value of 
p.

3.13.  It is clear that the proposed model more accurately predicts actual pure premium by decile 
than does the current rating plan. Specifically, consider the first decile. It contains the risks that 
the model thinks are best relative to the current plan. As it turns out, the model is correct. 
Similarly, in the 10th decile, the model more accurately predicts pure premium than does the 
current plan.
Comment: Graph taken from “Introduction to Predictive Modeling Using GLMs A Practitioner’s 
Viewpoint,” a presentation by Dan Tevet and Anand Khare.

3.14.  The use of a log link results in the linear predictor, which begins as a series of additive 
terms, transforming into a series of multiplicative factors when deriving the model prediction.
Multiplicative models are the most common type of rating structure used for pricing insurance, 
due to a number of advantages they have over other structures. 

3.15.  The sensitivity is: true positives
total times there is an event

 = 700 / 1000 = 0.70. 

The specificity is: true negatives
total times there is not an event

 = 6000 / 8000 = 0.75.

For this threshold, we graph the point: (1 - specificity , sensitivity) = (0.25, 0.70). 

3.16.   1. Setting of objectives and goals.
Determine the goals. Determine appropriate data to collect. Determine the time frame.
What are key risks and how can they be mitigated?
Who will work on the project; do they have the necessary knowledge and expertise? 

2. Communicating with key stakeholders.
Legal and regulatory compliance. Information. Technology (IT) Department.
Underwriters. Agents.

3. Collecting and processing the necessary data for the analysis.
Time-consuming. Data is messy. Often an iterative process. The data should also be split into at 
least two subsets, so that the model can be tested on data that was not used to build it. 
Formulate a strategy for validating the model.
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4. Conducting exploratory data analysis (EDA).
Spend some time to better understand the nature of the data and the relationships between the 
target and explanatory variables. Helpful EDA plots include:
Plotting each response variable versus the target variable to see what (if any) relationship 
exists. 
Plotting continuous response variables versus each other, to see the correlation between them.

5. Specifying the form of the predictive model.
What type of predictive model works best?
What is the target variable, and which response variables should be included?
Should transformations be applied to the target variable or to any of the response variables?
Which link function should be used?

6. Evaluating the model output.
Assessing the overall fit of the model.
Identifying areas in which the model fit can be improved.
Analyzing the significance of each predictor variable, and removing or transforming variables 
accordingly.
Comparing the lift of a newly constructed model over the existing model or rating structure.

7. Validating the model.
Assessing fit with plots of actual vs. predicted on holdout data. Measuring lift.
For Logistic Regression, use Receiver Operating Characteristic (ROC) Curves.

8. Translating the model results into a product.
For GLMs, often the desired result is a rating plan. 
The product should be clear and understandable. 
Are there other rating factors included in the rating plan that were not part of the GLM?

9. Maintaining the model.
Models should be periodically rebuilt in order to maximize their predictive accuracy, but in the 
interim it may be beneficial to merely refresh the existing model using newer data.

10. Rebuilding the model.
More frequently one would update the classification relativities without updating the rating 
algorithm or classification definitions. Less frequently, one would do a more complete update, 
investigating changing the classification definitions, the predictor variables used, and/or the 
rating algorithm.

Comment: See Chapter 3 of Generalized Linear Models for Insurance Rating. 
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3.17.  (a) Concentrate on one of the explanatory variables Xj.
The partial residuals are: (ordinary residual) g’( µ̂ i) + xij β̂ j. 
(b) In a Partial Residual Plot, we plot the partial residuals versus the variable of interest.
If there seems to be curvature rather than linearity in the plot, that would indicate a departure 
from linearity between the explanatory variable of interest and g(µ), adjusting for the effects of 
the other independent variables.

3.18.  The second model includes an interaction term.
In the second model, the effect of X1 depends on the level of X2 and vice-versa.
In contrast, for the first model, the effects of X1 and X2 are independent.

3.19.  “Check for duplicate records. If there are any records that are exactly identical, this 
likely represents an error of some sort. This check should be done prior to aggregation and 
combination of policy and claim data.”
“Cross-check categorical fields against available documentation. If data base
documentation indicates that a roof can be of type A, B, or C, but there are records where the 
roof type is coded as D, this must be investigated. Are these transcription errors, or is the 
documentation out of date?”
“Check numerical fields for unreasonable values. For every numerical field, there are ranges 
of values that can safely be dismissed as unreasonable, and ranges that might require further 
investigation. A record detailing an auto policy covering a truck with an original cost (new) of $30 
can safely be called an error. But if that original cost is $5,000, investigation may be needed.”
Comment: Quoted from Section 4.2 of Generalized Linear Models for Insurance Rating t. 
“Decide how to handle each error or missing value that is discovered. The solution to 
duplicate records is easy, delete the duplicates. But fields with unreasonable or impossible 
values that cannot be corrected may be more difficult to handle.”

3.20.  
1. Plot each response variable versus the target variable, to see what if any relationship exists. 
2. Plot continuous response variables versus each other, to see the correlation between them.

3.21.  Advantages of the frequency/severity approach over pure premium modeling:
● Provides the actuary with more insight.
● Each of frequency and severity is more stable than pure premium.  
Disadvantages of pure premium modeling versus the frequency/severity approach:
● Some interesting effects may go unnoticed.
● Pure premium modeling can lead to underfitting or overfitting. 
● The Tweedie distribution used to model pure premium contains the implicit assumption that 
! an increase in pure premiums is made up of an increase in both frequency and severity.
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3.22.  In general, an offset factor is a vector of known amounts which adjusts for known effects 
not otherwise included in the GLM. For example, one could take the current territories and 
territory relativities as givens, and include an offset term in a GLM for the current territory 
relativity. In general: g(µi) = β0 + β1xi1 + β2xi2 + ...+ βpxip + offset. 
An offset is used with a Poisson Distribution and a log link function, and there are exposures 
associated with each observation. In that case, the offset term is ln(exposure) = ln(ni).
Then the model is: ln(Yi) = ln(ni) + ηi. 

� 

⇔  Yi = ni exp[ηi].

3.23.  The observation for Slovakia has by far the biggest Cook’s Distance, and is thus the most 
influential. The observations for the Czech Republic and Slovenia are less influential than 
Slovakia, but more influential than the others.

3.24.  The saturated model has an equal number of predictors as there are records in the 
dataset. Since the saturated model predicts each record perfectly it is the theoretical best a 
model can possibly do.
The null model has only an intercept and no predictors. The null model produces the same 
prediction for every record: the grand mean.
The scaled deviance for the saturated model is zero, while the scaled  deviance of the null 
model can be thought of as the total deviance inherent in the data. The scaled deviance for your 
model will lie between those two extremes.

3.25.  The deviance residuals seem to be on average positive for small and large values of X2, 
while being on average negative for middle values of X2.  Such a pattern is not good. This 
indicates that one should investigate other possible forms of the model, for example, a model 
including a term involving X22.

3.26.  Adding credit score adds 6 - 1 = 5 parameters to the model.
Test statistic is: 

F = DS - DB
(number of added parameters) φ̂B

 = (233,183.65 - 233,134.37) / 5
 2.371

 = 4.157.

The number of degrees of freedom in the numerator is 5.
The number of degrees of freedom in the denominator is: 
number of observations minus the number of parameters in the bigger model 
= 100,000 - 16 = 99,984.
We compare the test statistic to an F-distribution with 5 and 99,984 degrees of freedom.
The null hypothesis is to use the simpler model.
The alternate hypothesis is to use the more complex model including credit score.
We reject the null hypothesis when the F-Statistic is big.
Comment: Using a computer, the p-value of this test is 0.09%.
Thus one would use the more complex model including credit score rather than the simpler 
model.
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3.27.  Arranged from smallest to largest: -0.328, -0.154, -0.064, 0.195, 0.239.
Plot (Qi/6, x(i)). 
Q1/6 = -0.967, since Φ[ -0.967] = 1/6.  Q2/6 =  -0.431.  Q3/6 = 0.  Q4/6 =  0.431.  Q5/6 = 0.967.
Thus the five plotted points are:
(-0.967, -0.328), (-0.431, -0.154), (0, -0.064), (0.431, 0.195), (0.967, 0.239).
Here are the 5 points plotted:

!

-1 . 0 -0 . 5 0.5 1.0
Normal Quantiles

-0 . 3

-0 . 2

-0 . 1

0.1

0.2

SampleQuantiles

There is too little data to decide whether or not these stock price returns are Normally 
distributed. 

3.28.  Gini index = 2A. 

Comment: Gini index = Area A
Area A + Area B

.

However, Area A + Area B add up to a triangle with area 1/2.

Therefore, Gini index = Area A
Area A + Area B

 = 2A 

! ! ! = twice the area between the Lorenz Curve and the line of equality = 1 - 2B.

3.29.  Factors for coverage options should be estimated outside the GLM, using traditional 
actuarial techniques. The resulting factors should then be included in the GLM as an offset. 

3.30.  Min[X - c, 0], where c is some constant and X is a variable. 
For example, Min[X2 - 13, 0] is a hinge function.

3.31.  Model D is preferred. Bigger Area Under ROC Curve (AUROC) is better. 
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3.32.  35 ± 1.96 5  = (30.62, 39.38).

3.33.  BIC = (-2) (maximum loglikelihood) + (number of parameters)ln[400].
For example, BIC = (-2)(-730.18) + 3 ln[400] = 1478.33.

Model Number of Parameters Loglikelihood BIC

A 3 -730.18 1478.33
B 4 -726.24 1476.45
C 5 -723.56 1477.08
D 6 -721.02 1477.99
E 7 -717.50 1476.94

Since BIC is smallest for model B, model B is preferred.

3.34.  exp[-3.8 + (0.4)ln[1/2] ] = 1.7%.
Comment: Loosely based on Table 12 in Generalized Linear Models for Insurance Rating, 
by Goldburd, Khare and Tevet.

3.35.  exp[-3.8 + 0.3 - 0.5 + (0.4) ln[2.5/2] - (0.1) ln[2.5/2] ] = 2.0%.

3.36.  exp[-3.8 + 0.5 + (0.4)ln[3/2] ] = 4.3%.

3.37.  exp[-3.8 + 0.1 - 0.5 + (0.4)ln[6/2] - (0.1) ln[6/2] ] = 2.1%.

3.38.  Histogram A most closely matches the Normal Distribution.

3.39. a) Identity link function.
b) Log link function.
c) Poisson Distribution.
d) For the variance proportional to the square of the mean, use the Gamma Distribution.

3.40.  The partial residual plot is not linear; thus, we should do something to improve the model.
Since the slope seems to change somewhere around 50 or 60, we could use a hinge function: 
Min[0, X4 - 50] or Min[0, X4 - 60].
Comment: In general, we could instead group the variable, or add polynomial terms to the 
model.

3.41.  We can divide the original data into three sets.
We fit GLMs to the training data, until we have one or more good candidate models.
Then we see how these models perform on the validation set.
Based on what we find out, we can go back and fit some other GLMs to the training data.
The validation set is used to refine the models during the building process.
The test set (holdout data) is held out until the end.
We compare the performance of models on the test set to pick a final model to use.
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3.42.
Distribution V(µ)

Normal µ0 = 1

Poisson µ1 = µ

Gamma µ2

Binomial (one trial) µ (1-µ)

Inverse Gaussian µ3

Tweedie µp, p < 0, 1 < p < 2, or p > 2.
Alternately, for the Binomial Distribution, V(µ) = µ (1 - µ/m).

3.43.  Q1/21 = -1.668, since Φ[-1.668] = 1/21.
Thus the first plotted point is: (-1.668 , 500).
The Q-Q Plot:

! -1 . 5 -1 . 0 -0 . 5 0.5 1.0 1.5
Normal Quantiles

500

1000

1500

2000
SampleQuantiles
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3.44.  For a Poisson, f(n) = e-λλn/n!.  
ln f(n) = -λ + nlnλ - ln(n!) = -exp[β0 + β1X1i + β2X2i] + ni(β0 + β1X1i + β2X2i) - ln(ni!).

loglikelihood = -∑exp[β0 + β1X1i + β2X2i] + ∑Yi(β0 + β1X1i + β2X2i) + constants.
Setting the partial derivatives of the loglikelihood with respect to β0, β1, and β2 equal to zero:

0 = -∑exp[β0 + β1X1i + β2X2i] + ∑Yi.

0 = -∑X1iexp[β0 + β1X1i + β2X2i] + ∑YiX1i.

0 = -∑X2iexp[β0 + β1X1i + β2X2i] + ∑YiX2i.

∑Yi = 8 + 8 + 10 + .... + 33 + 31 = 369.

∑YiX1i = 8ln(2) + 8ln(4) + 10ln(6) + .... + 33ln(18) + 31ln(20) = 872.856.

∑YiX2i = 14 + 19 + .... + 33 + 31 = 241.
exp[β0 + β1X1i + β2X2i] = exp[β0]exp[β1X1i]exp[β2X2i] = exp[β0]exp[X1i]β1exp[β2X2i].  
The first equation becomes:
exp[β0] {2 β1  +  4 β1  + ... + 20β1  + 2 β1exp[β2] + 4 β1exp[β2] + 20β1exp[β2]} = 369. ⇒
exp[β0] (1 + exp[β2]) {2β1  + 4 β1 + 6 β1  + ... + 20 β1} = 369.  
The second equation becomes:
exp[β0] (1 + exp[β2]) {ln(2)2β1  + ln(4)4 β1 + ln(6)6 β1  + ... + ln(20)20β1 } = 872.856. 
The third equation becomes:
exp[β0] exp[β2] {2 β1  + 4β1  + 6 β1 + ... + 20β1 } = 241.
Comment: Well beyond what you should be asked on your exam!
A Poisson variable with a logarithmic link function.
Dividing the 1st and 3rd equations: 
(1 + exp[β2])/exp[β2] = 369/241. ⇒ β2 = ln(241/148) = 0.6328. 
Using a computer, the fitted parameters are: β0 = 1.684, β1 = 0.3784, β2 = 0.6328.
One can verify that these values satisfy the three equations. 
Example taken from Applied Regression Analysis by Draper and Smith.

3.45.  While one may assume that the errors are Normally Distributed, in a GLM one could 
assume a different distribution of errors, such as Gamma or Poisson. 
Thus Statement #1 is not true.
Statements #2 and #3 are true.
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3.46.  With four age categories, we add 4 -1 = 3 parameters.

Test statistic is: F = DS - DB
(number of added parameters) φ̂B

 = 3320.2 - 3306.9
 (3) (1.83)

 = 2.42.

The number of degrees of freedom in the numerator is 3.
The number of degrees of freedom in the denominator is: 
number of observations minus the number of parameters in the bigger model. 
We compare the test statistic to the appropriate F-distribution.
We reject the null hypothesis if the test statistic is sufficiently big. 

3.47. “Broadly speaking, model lift is the economic value of a model. The phrase “economic 
value” doesn’t necessarily mean the profit that an insurer can expect to earn as a result of 
implementing a model, but rather it refers to a model’s ability to prevent adverse selection. The 
lift measures ...  attempt to visually demonstrate or quantify a model’s ability to charge each 
insured an actuarially fair rate, thereby minimizing the potential for adverse selection.
Model lift is a relative concept, so it requires two or more competing models. That is, it doesn’t 
generally make sense to talk about the lift of a specific model, but rather the lift of one model 
over another.
In order to prevent overfitting, model lift should always be measured on holdout data.”
Comment: Quoted from Section 7.2 of Generalized Linear Models for Insurance Rating.

3.48.  The effects of age and gender interact strongly. For example, the relationship between 
male and female relativities is very different for young drivers than it is for middle-aged drivers.
In contrast, the effects of frequency of payment and age do not appear to interact significantly;
there seems to be approximately the same relationship for each age group.
Comment: The graphs are adapted from “A Practitioner's Guide to Generalized Linear Models,“
by Duncan Anderson, Sholom Feldblum, Claudine Modlin, Doris Schirmacher, Ernesto 
Schirmacher, and Neeza Thandi.

3.49.  The second model is preferred since the predictions are closer to the actual than in 
Model 1.
Comment: See Figure 21 in Generalized Linear Models for Insurance Rating. 
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3.50.  Let X1 = 1 if age group A, and 0 otherwise.
X2 = 1 if age group B, and 0 otherwise.
X3 = 1 if small, and 0 otherwise.
X4 = 1 if medium, and 0 otherwise.
X5 = 1 if large, and 0 otherwise.
Then the design matrix is: 

A/small
A/medium
A/large
B/small
B/medium
B/large
C/small
C/medium
C/large

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ⇔ 

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.

For example, the first row corresponds to age group A and small: 
X1 = 1, X2 = 0, X3 = 1, X4 = 0, and X5 = 0.
The last row corresponds to age group C and large: X1 = 0, X2 = 0, X3 = 0, X4 = 0, and X5 = 1.

The vector of parameters is: 

β1
β2
β3
β4
β5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.

Alternately, define medium and age group C as the base level.
Then the constant, b0, would apply to all observations.
Let X1 = 1 if age group A, and 0 otherwise.
X2 = 1 if age group B, and 0 otherwise.
X3 = 1 if small, and 0 otherwise.
X4 = 1 if large, and 0 otherwise.
Then the design matrix is: 
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A/small
A/medium
A/large
B/small
B/medium
B/large
C/small
C/medium
C/large

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ⇔ 

1 1 0 1 0
1 1 0 0 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 0
1 0 1 0 1
1 0 0 1 0
1 0 0 0 0
1 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.

The first column of ones corresponds to the constant term which applies to all observations.
For example, the first row corresponds to age group A and small: 
X0 = 1, X1 = 1, X2 = 0, X3 = 1, X4 = 0.
The last row corresponds to age group C and large: X0 = 1, X1 = 0, X2 = 0, X3 = 0, X4 = 1.

The vector of parameters is: 

β0
β1
β2
β3
β4

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.

Comment: There is no unique answer. I have given two out of the many possible answers.
There are 3 age categories and 3 size categories, so we need to have either 3 + 3 - 1 = 5 
covariates, or 4 covariates and a constant term.
The data would be arranged in a grid such as:

Small Medium Large

Age A ??? ??? ???

Age B ??? ??? ???

Age C ??? ??? ???
The response vector would have 9 rows and one column, containing the observations in the 
same order as the rows of the design matrix.
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3.51.  “If the modeler retains variables in the model that reflect a non-systematic effect on the 
response variable (i.e., noise) or over-specifies the model with high order polynomials, the result 
is over-fitting. Such a model will replicate the historical data very well (including the noise) but is
not going to predict future outcomes reliably (as the future experience will most likely not have 
the same noise). 
Conversely, if the model is missing important statistical effects (the extreme being a model that
contains no explanatory variables and fits to the overall mean), the result is under-fitting. This 
model will predict future outcomes (e.g., in the extreme case mentioned above, the future mean) 
reliably but hardly help the modeler explain what is driving the result.”
“Considerable disparity between actual and expected results on the hold-out sample may 
indicate that the model is over or under-fitting.”
Underfit. ⇔ Too few Parameters. ⇔ Does not use enough of the useful information.
Overfit. ⇔ Too many Parameters. ⇔ Reflects too much of the noise.
In general, the actuary wants to avoid both underfitting and overfitting models.
Comment: See page 182 of Basic Ratemaking, on Exam 5.

3.52.  The 18th observation has by far the biggest Cook’s Distance, and is thus the most 
influential.

3.53.  (a) AIC = (-2) (maximum loglikelihood) + (number of parameters)(2).
For the first model, AIC = (-2)(-321.06) + (6)(2) = 654.12.
For the second model, AIC = (-2)(-319.83) + (7)(2) = 653.66.
Since AIC is smaller for the second model, the second model is preferred.
(b) BIC = (-2) (maximum loglikelihood)) + (number of parameters) ln(number of data points).
For the first model, BIC = (-2)(-321.06) + (6) ln[100] = 669.75.
For the second model, BIC = (-2)(-319.83) + (7) ln[100] = 671.90.
Since BIC is smaller for the first model, the first model is preferred.
Comment: An example where using AIC and BIC lead to different conclusions.

3.54.  di2 = 2 {yi ln[yi / µ̂i ]- (yi - µ̂i)}  = 2{11 ln[11/9.5] - (11 - 9.5)} = 0.2253.

Since 11 - 9.5 > 0, we take di as positive.  di = 0.2253  = 0.475. 

3.55.  Graph B is closest to a straight line.
Comment: If the data was drawn from a Normal Distribution with m ≠ 0, then we would expect 
the plotted points to be close to a straight line, but not a straight line through the origin.

3.56.  (a) Poisson with log link function.
(b) Poisson or Negative Binomial with log link function.
(c) Gamma with log link function.
(d) Binomial with logit link function.
(e) Tweedie with log link function.
Comment: Claim frequency is claim count per exposure. If each insured has the same number 
of exposures, then a model of claim counts and claim frequency are mathematically equivalent.
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3.57.  Larger Gini index is better, all else being equal. The second rating plan is preferred 
Comment: The higher the Gini index, the better the model is at identifying risk differences.

3.58.  If the current rating plan were perfect, then all risks should have the same loss ratio. The 
fact that the proposed model is able to segment the data into lower and higher loss ratio buckets 
is a strong indicator that it is outperforming the current rating plan.
Comment: Graph taken from “Introduction to Predictive Modeling Using GLMs A Practitioner’s 
Viewpoint,” a presentation by Dan Tevet and Anand Khare.

3.59.  For levels 1 to 7 of the variable, the log of the multiplier is not significantly different than 
zero; in other words the relativity is not significantly different from one. Also for levels 1 to 7, 
there is no consistent pattern. Thus perhaps, levels 1 to 8 of this variable should be grouped into 
one level for purposes of the model; this would be treated as the new base.
In contrast, for levels 9 to 15 there is pattern of increasing relativities. For levels 11 to 15 the 
relativities are significantly different from one. Given the pattern, one could also use the 
indicated relativities for levels 9 and 10.
Comment: As always, more testing may lead to a different conclusion. For example, it would be 
interesting to compare the results for different years of data to see if they are consistent.
For example, the levels of the variable could be groups of annual income.
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3.60.  There are many ways to define the variables.
Let us define X1 = 1 if male and zero otherwise.
X2 = 1 if female and zero otherwise.
X3 = 1 if urban and zero otherwise.
For the Poisson, f(x) = λx e-λ / x!.  ln f(x) = x ln(λ) - λ - ln(x!) = x ln(µ) - µ - constants.
(a) We use an identity link function.  The estimated means are:

Urban Rural

Male β1 + β3 β1

Female β2 + β3 β2

Ignoring constants, the loglikelihood is: 
0.2 ln(β1 + β3) - (β1 + β3) + 0.1 ln(β1) - (β1) + 0.125 ln(β2 + β3) - (β2 + β3) + 0.05 ln(β2) - (β2).
Setting the partial derivative with respect to β1 equal to zero: 0.2/(β1 + β3) + 0.1/β1 = 2. 
Setting the partial derivative with respect to β2 equal to zero: 0.125/(β2 + β3) + 0.05/β2 = 2. 
Setting the partial derivative with respect to β3 equal to zero: 0.2/(β1 + β3) + 0.125/(β2 + β3) = 2.
(b) We use an log link function.  The estimated means are:

Urban Rural

Male exp[β1 + β3] exp[β1]

Female exp[β2 + β3] exp[β2]

Ignoring constants, the loglikelihood is: 
0.2(β1 + β3) - exp[β1 + β3] + 0.1β1 - exp[β1] + 0.125(β2 + β3) - exp[β2 + β3] + 0.05 β2 - exp[β2].
Setting the partial derivative with respect to β1 equal to zero: exp[β1 + β3] + exp[β1] = 0.3. 
Setting the partial derivative with respect to β2 equal to zero: exp[β2 + β3] + exp[β2] = 0.175. 
Setting the partial derivative with respect to β3 equal to zero: exp[β1 + β3] + exp[β2 + β3] = 0.325. 
Comment: Using a computer, the fitted parameters in part (a) are:
β1 = 0.105556, β2 = 0.047500, β3 = 0.084444.
The fitted frequencies are: 0.1900, 0.1056, 0.1319, 0.0475.
Using a computer, the fitted parameters in part (b) are: 
β1 = -2.35665, β2 = -2.89565, β3 = 0.77319.
The fitted frequencies are: 0.2053, 0.0947, 0.1197, 0.0553.

3.61.  The sensitivity is: true positives
total times there is an event

 = 1800/3000 = 0.6. 

The specificity is: true negatives
total times there is not an event

 = 40,000/50,000 = 0.8.

For this threshold, we graph the point: (1 - specificity , sensitivity) = (0.2, 0.6). 
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3.62.  f(y) = exp[-(y - µ)2/(2σ2)]/{σ 2π }.  ln f(Yi) = -(Yi - βXi)2/(2σ2) - ln(σ) - ln(2π)/2.
Loglikelihood is:  -∑(Yi - βXi)2/(2σ2) - n ln(σ) - n ln(2π)/2.
Set the partial derivative of the loglikelihood with respect to b equal to zero:
0 = ∑Xi(Yi - βXi)/σ2. ⇒ ∑XiYi = β∑Xi2. ⇒ β̂  = ∑XiYi / ∑Xi2 = 3080/751 = 4.10.

Comment: Matches the linear regression model with no intercept, β̂  = ∑XiYi / ∑Xi2. 

3.63.  Set the partial derivative of the loglikelihood with respect to s equal to zero:
0 = ∑(Yi - βXi)2/σ3 - n/σ. ⇒ σ2 = ∑(Yi - βXi)2/n =
{5 - (1)(4.1)}2 + {15 - (5)(4.1)}2 + {50 - (10)(4.1)}2 + {100 - (25)(4.1)}2

4
 = 29.58.

β̂  = ∑XiYi / ∑Xi2.   Var[ β̂ ] = Var[∑XiYi / ∑Xi2] = ∑Var[XiYi / ∑Xi2] = ∑Xi2Var[Yi ]/ (∑Xi2)2 = 

∑Xi2σ2/ (∑Xi2)2 = σ2/∑Xi2 = 29.58/751 = 0.0394.
StdDev[β̂ ] = 0.0394  = 0.198.
Comment: In the linear regression version of this same example, one would estimate the 
variance of the regression as: σ2 = ∑ ε̂i2  / (N - 1) = 

{5 - (1)(4.1)}2 + {15 - (5)(4.1)}2 + {50 - (10)(4.1)}2 + {100 - (25)(4.1)}2

4 - 1
 = 39.4.  This is an unbiased 

estimate of σ2, which is not equal to that from maximum likelihood which is biased.

3.64.  Estimated mean severity for a male in Territory D is: exp[8.03 + 0.18 + 0.22] = 4583.
For the Inverse Gaussian Distribution, Var[Y] = φµ3 = (0.00510)( 45833) = 490,930,199.
StdDev[Y] = 490,930,199  = 22,157.

3.65.  1. Actuarial judgement. Does the model make sense; is the model reasonable.
2. Statistical Tests such as the F-Test.
3. Graph the modeled relativities plus or minus two standard errors. 
    We would like the range between plus and minus two standard errors to be relatively narrow.
4. Check the consistency of the model run on different years of data.
5. Check the predictive accuracy of the model on a hold-out data set.
Comment: There are other possible answers.

3.66.  The variance of the residuals appears to increasing with the fitted values, indicating 
heteroscedasticity (a lack of homoscedasticity.) This is not good, and one should try to refine the 
current model.
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3.67.  The scaled deviance is equal to twice the difference between the maximum achievable 
loglikelihood (i.e., the loglikelihood where the fitted value is equal to the observation for every 
record) and the loglikelihood of the model.
Alternately, the scaled deviance is equal to twice the difference between the loglikelihood of the 
saturated model and the loglikelihood of the fitted model.

3.68.  ln[µ/207] = 0.43 + 0.22 - 0.32 + 0.36 = 0.69.
µ = 207 exp[0.69] = $413.
Comment: This is a multiplicative model with four categorical variables.

3.69.  A model that combines information from two or more models is called an ensemble model.
Two (or more) teams model the same item; they build separate models working independently.
Combining the answers from both models is likely to perform better than either individually.
A simple means of ensembling is to average the separate model predictions.

3.70.  di2 = θ (yi - ŷi)2
ŷi2  yi

 = 1
121

 (288 - 361)2

3612 288
 = 0.000001173.

Since 288 - 361 < 0, we take di < 0.  di = -0.00108.

3.71.  Test statistic is: F = DS - DB
(number of added parameters) φ̂B

 = (24,359 - 24,352) / 1
 1.22

 = 5.738.

The number of degrees of freedom in the numerator is 1.
The number of degrees of freedom in the denominator is: 
number of observations minus the number of parameters in the bigger model 
= 20,000 - 4 - 1 = 19,995.
This is equivalent to a two sided t-test at 5.738  = 2.395, with 19,995 degrees of freedom.
Using the Normal approximation, the p-value is: (2) (1 - Φ[2.395]).
Since 2.326 < 2.395 < 2.576, the two-sided p-value is between 2% and 1%.
Thus at a 2% significance level we should use the more complex model with the added variable, 
but at a 1% significance level we should use the simpler model without the additional variable.
Comment: Using a computer, the p-value of this test is 1.66%.
The null hypothesis is to use the simpler model. The alternate hypothesis is to use the more 
complex model. We reject the null hypothesis if the test statistic is sufficiently big.
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3.72.  The actuary would like the GLM to be stable; in other words, the predictions of the model 
should not be overly sensitive to small changes in the data.
An observation is influential if it has a large effect on the fitted model. 
The larger the value of Cook’s distance, the more influential the observation. 
The actuary should rerun the model excluding the most influential points to see their impact on 
the results. If this causes large changes in some of the parameter estimates, the actuary should 
consider for example whether to give these influential observations less weight.
Cross-validation can also be used to assess the stability of a GLM. A single model can be run on 
the set of folds. The results of the models fit to these different subsets of the data ideally should 
be similar. The amount by which these results vary is a measure of the stability of the model. 
Bootstrapping via simulation can also be used to assess the stability of a GLM. The original data 
is randomly sampled with replacement to create a new set of data of the same size. One then 
fits the GLM to this new set of data. By repeating this procedure many times one can estimate 
the distribution of the parameter estimates of the GLM; we can estimate the mean, variance, 
confidence intervals, etc. 

3.73.  Φ[-1.645] = 1/20.  Thus for the given Normal, Q0.05 = 1000 - (1.645)(300) = 506.5.
The 19 plotted points are: (506.5, 258), (615.5, 636), (689.1, 652), (747.5, 814), 
(797.7, 833), (842.7, 860), (884.4, 895), (924.0, 937), (962.3, 950), (1000.0, 1009), 
(1037.7, 1020), (1076.0, 1059), (1115.6, 1103), (1157.3, 1113), (1202.3, 1127), 
(1252.5, 1139), (1310.9, 1246), (1384.5, 1335), (1493.5, 1770).
The resulting Q-Q plot:

      500 1000 1500
Dist. Quant.

500

1000

1500

Normal Quantiles
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Alternately, one could standardize the data, by subtracting the sample mean of 987.158 and 
dividing by the square root of the sample variance of 96,057.8.
For example, (258 - 987.158) / 96,057.8  = -2.353.
Then one compares the standardized data to the quantiles of the Standard Normal Distribution.
(-1.645, -2.353), (-1.282, -1.133), (-1.036, -1.081), (-0.842, -0.559), (-0.674, -0.497), 
(-0.524, -0.410), (-0.385, -0.297), (-0.253, -0.162), (-0.126, -0.120), (0, 0.070), (0.126, 0.106),
(0.253, 0.232), (0.385, 0.374), (0.524, 0.406), (0.674, 0.451), (0.842, 0.490), (1.036, 0.835), 
(1.282, 1.122), (1.645, 2.526).
The resulting Q-Q plot:

!

-2 -1 1 2
Normal Quantiles

-2

-1

1

2

SampleQuantiles

Comment: With the exception of the first and last plotted points, the points stay close to the 
45 degree comparison line, indicating that this data may be normally distributed.

3.74.  di2 = (2)(5) {-ln[113/102.4] + (113 - 102.4)/102.4} = 0.050145.
Since 113 - 102.4 > 0, we di as positive.  di = 0.050145  = 0.224.
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3.75. a) The total number of cells is: (2)(4)(3) = 24.  So the design matrix would have 24 rows.
Each row has a one in the first column; the intercept term applies to all insureds.
For example, the first row has one in columns 3 and 6 corresponding to age 17-21 and 
Territory A.

!

1 0 1 0 0 1 0
1 0 0 1 0 1 0
1 0 0 0 0 1 0
1 0 0 0 1 1 0
1 1 1 0 0 1 0
1 1 0 1 0 1 0
1 1 0 0 0 1 0
1 1 0 0 1 1 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 0 0 0
1 0 0 0 1 0 0
1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 1 0 0 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 0 1
1 0 0 1 0 0 1
1 0 0 0 0 0 1
1 0 0 0 1 0 1
1 1 1 0 0 0 1
1 1 0 1 0 0 1
1 1 0 0 0 0 1
1 1 0 0 1 0 1

⎛
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F 17-21 A
F 22-29 A
F 30-59  A
F 60+ A

M 17-21 A
M  22-29 A
M 30-59 A
M 60+ A

F 17-21 B
F 22-29 B
F 30-59 B
F 60+ B

M 17-21 B
M  22-29 B
M 30-59 B
M 60+ B

F 17-21 C
F 22-29 C
F 30-59 C
F 60+ C

M 17-21 C
M 22-29 C
M 30-59 C
M 60+ C

b) 30-59 year old female driver in Territory B is the base. Estimated frequency is exp[β̂1].
c) For 22-29 year old male driver in Territory C, the estimated frequency is:
 exp[ β̂1 + β̂2  + β̂4  + β̂7 ].
Comment: One can arrange the rows of the design matrix differently, as long as everything is 
consistent. Since there is an intercept term, and since each of the factors is a categorical 
variable, each has one less parameter than its number of levels. 
We have chosen 30-59 year old female driver in Territory B as the base; some other choice 
could have been made.
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3.76.  AIC = (-2) (maximum loglikelihood) + (number of parameters)(2).
For example, AIC = (-2)(-359.17) + (3)(2) = 724.34.

Model Number of Parameters Loglikelihood AIC

A 3 -359.17 724.34
B 4 -357.84 723.68
C 5 -356.42 722.84
D 6 -354.63 721.26
E 7 -353.85 721.70

Since AIC is smallest for model D, model D is preferred.

3.77.  In the first graph, the relativities indicated by the separate years are similar to each other.
Also the relativities for each year display a similar pattern of increase with vehicle symbol, which 
makes sense. Vehicle symbol appears to be a significant factor for the first model; it is likely to 
be a good predictor of future experience.
In the second graph, the relativities indicated by separate years are not consistent. Territory 
does not appear to be a significant factor for the second model.
Comment: The graphs are adapted from ones showing more information in Sections 2.40-2.41 
of “A Practitioner's Guide to Generalized Linear Models,“by Duncan Anderson, Sholom 
Feldblum, Claudine Modlin, Doris Schirmacher, Ernesto Schirmacher, and Neeza Thandi, not on 
the syllabus.

3.78.  If two predictors are highly correlated (have a correlation coefficient close to plus or minus 
one) coefficients may behave erratically. Furthermore, the standard errors associated with those 
coefficients will be large, and small perturbations in the data may swing the coefficient estimates 
wildly. Such instability in a model should be avoided. As such it is important to look out for 
instances of high correlation prior to modeling, by examining two-way correlation tables. 
Where high correlation is detected, means of dealing with this include the following:
• For any group of correlated predictors, remove all but one from the model. 
• Preprocess the data using dimensionality reduction techniques such as principal component 
! analysis.
Multicollinearity: A more subtle potential problem may exist where two or more predictors in a 
model may be strongly predictive of a third, a situation known as multicollinearity. The same 
instability problems as above may result. A useful statistic for detecting multicollinearity is the 
variance inflation factor (VIF), which can be output by most statistical packages. A common 
statistical rule of thumb is that a VIF greater than 10 is considered high. 
Aliasing: Where two predictors are perfectly correlated, they are said to be aliased, and the GLM 
will not have a unique solution.  Where they are nearly perfectly correlated, the model will be 
highly unstable; the fitting procedure may fail to converge, and even if the model run is 
successful the
estimated coefficients will be nonsensical. Such problems can be avoided by looking out for and 
properly handling correlations among predictors, as discussed above.
Comment: See Section 2.9 of Generalized Linear Models for Insurance Rating.
Not necessary to say all of the above rather than some of the above.
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3.79. 1. They are simple and practical to implement.
2. Having additive terms in a model can result in negative premiums, which doesn’t make sense. 
With a multiplicative plan you guarantee positive premium without having to implement clunky 
patches like minimum premium rules.
3. A multiplicative model has more intuitive appeal. It doesn’t make much sense to say that 
having a violation should increase your auto premium by $500, regardless of whether your base 
premium is $1,000 or $10,000. 
Rather it makes more sense to say that the surcharge for having a violation is 10%.
Comment: For these and other reasons, log link models, which produce multiplicative structures,
are usually the most natural model for insurance risk.
“As for the link function, it is usually the case that the desirability of a multiplicative rating plan 
trumps all other considerations, so the log link is almost always used. One notable exception is 
where the target variable is binary (i.e., occurrence or non-occurrence of an event), for which a 
special link function (logistic) must be used.” 

3.80.  In order to incorporate age, avoiding aliasing, we need 6 - 1 = 5 variables. 
In order to incorporate gender, we would need one more variable for a total of 6.
So getting rid of age and gender would produce a model with 6 fewer parameters.

Test statistic is: F = DS - DB
(number of added parameters) φ̂B

 = (1128.1 - 1120.3) / 6
 0.395

 = 3.291.

The number of degrees of freedom in the numerator is 6.
The number of degrees of freedom in the denominator is: 
number of observations minus the number of parameters in the bigger model 
= 1000 - 50 = 950.
We compare the test statistic to an F-distribution with 6 and 950 degrees of freedom.
The null hypothesis is to use the simpler model, the one without age and gender.
The alternate hypothesis is to use the more complex model.
We reject the null hypothesis if the test statistic is sufficiently big. 
Comment: Using a computer, the p-value of this test is 3.3%.

3.81.  “Firstly, when comparing two models using log-likelihood or deviance, the comparison is 
valid only if the data sets used to fit the two models are exactly identical. If a new variable has 
missing values for some records, the default behavior of most model fitting software is to toss 
out those records when fitting the model. In that case, the resulting measures of fit are no longer 
comparable, since the second model was fit with fewer records than the first.
For any comparisons of models that use deviance it is also necessary that the assumed 
distribution must be identical as well.” 
Comment: See Section 6.1.3 of Generalized Linear Models for Insurance Rating.
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3.82.  Age of spokesperson, gender of spokesperson, marital status of the spokesperson, time 
he has been a spokesperson, type of celebrity (actor, singer, athlete, etc.), criminal record of the 
spokesperson, past drug/alcohol abuse of the spokesperson, etc.
Comment: There are other reasonable answers.
This is often sold as death, disability, and disgrace insurance.

3.83.  Both are continuous distributions used to model severity. Both are right-skewed, with a 
sharp peak and a long tail to the right, and a lower bound at zero. 
The Gamma Distribution has variance function V(µ) = µ2, while the Inverse Gaussian 
Distribution has variance function V(µ) = µ3. 
The Inverse Gaussian Distribution has a sharper peak and a wider tail than the Gamma 
Distribution. 
Therefore, the Inverse Gaussian Distribution is appropriate for situations where the skewness of 
the severity curve is more extreme.
Comment: The skewness for the Gamma distribution is always twice times the coefficient of 
variation, while the skewness for the Inverse Gaussian distribution is always three times the 
coefficient of variation.

3.84.  For the Normal di2 = 1
σ2

 (yi - µ̂i)2  = {(71 - 74.8)/23}2.

Since 71 - 74.8 < 0, we take di < 0.  di = (71 - 74.8)/23 = -0.165.

3.85.  a) 9.5 + (0.01)(180) + (-0.02)(670) = -2.1.
Using the inverse of the logit link function, the probability of default is: 

exp(-2.1)
1 + exp(-2.1)

 = 10.9%.

b) 9.5 + (0.01)(100) + (-0.02)(760) = -4.7.

Probability of default is: exp(-4.7)
1 + exp(-4.7)

 = 0.9%.

Comment: Similar to 8, 11/12, Q.4a.  Not intended as a realistic model.

3.86.  The partial residual plot is not linear; thus, we should do something to improve the model.
We could group the variable X1, converting it into a categorical variable. 
We could add polynomial terms such X12 to the model.
We could use piecewise linear functions such as: Min[0, X1 + 1] and Min[0, X1 - 1].
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3.87.  There are many ways to define the variables.
Let us define X1 = 1 if low horsepower and zero otherwise.
X2 = 1 if medium horsepower and zero otherwise.
X3 = 1 if high horsepower and zero otherwise.
X4 = 1 if sedan and zero otherwise.

For the Gamma Distribution, f(y) = θ-αyα-1 e-y/θ / Γ(α).
ln f(y) = (α-1)ln(y) - y/θ - αln(θ) - ln[Γ(α)] = (α-1)ln(y) - y/(µ/α) - αln(µ/α) - ln[Γ(α)]
           = (α-1)ln(y) - αy/µ - αln(µ) + αln(α) - ln[Γ(α)].  
a) With the identity link function: µ = β1X1 + β2X2 + β3X3 + β4X4.
Ignoring terms that do not involve the betas, the loglikelihood is: 
-α800/(β1 + β4) - α ln(β1 + β4) - α900/(β2 + β4) - α ln(β2 + β4) - α1100/(β3 + β4) - α ln(β3 + β4)
- α1500/(β1) - α ln(β1) - α1700/(β2) - α ln(β2) - α2000/(β3) - α ln(β3).
Setting the partial derivative with respect to β1 equal to zero: 
800/(β1 + β4)2 + 1500/β1

2 = 1/(β1 + β4) + 1/β1. 
Setting the partial derivative with respect to β2 equal to zero: 
900/(β2 + β4)2 + 1700/β2

2 = 1/(β2 + β4) + 1/β2. 
Setting the partial derivative with respect to β3 equal to zero: 
1100/(β3 + β4)2 + 2000/β3

2 = 1/(β3 + β4) + 1/β3. 
Setting the partial derivative with respect to β4 equal to zero: 
800/(β1 + β4)2 + 900/(β2 + β4)2 + 1100/(β3 + β4)2 = 1/(β1 + β4) + 1/(β2 + β4) + 1/(β3 + β4).
(b) We use a log link function.  µ = exp[β1X1 + β2X2 + β3X3 + β4X4].
Ignoring terms that do not involve the betas, the loglikelihood is: 
-α800exp[-β1 - β4] - α(β1+β4) - α900exp[-β2 - β4] - α(β2+β4) - α1100exp[-β3 + β4] - α(β3+β4)
- α1500exp[-β1] - α(β1) - α1700exp[-β2] - α(β2) - α2000exp[-β3] - α(β3).
Setting the partial derivative with respect to β1 equal to zero: 
800exp[-β1 - β4] + 1500exp[-β1] = 2. 
Setting the partial derivative with respect to β2 equal to zero: 
900exp[-β2 - β4] + 1700exp[-β2] = 2. 
Setting the partial derivative with respect to β3 equal to zero: 
1100exp[-β3 - β4] + 2000exp[-β3] = 2. 
Setting the partial derivative with respect to β4 equal to zero: 
800exp[-β1 - β4]  + 900exp[-β2 - β4] + 1100exp[-β3 - β4] = 3. 
Comment: Using a computer, the fitted parameters in part (a) are:
β1 = 1567.71, β2 = 1688.03, β3 = 1914.41, β4 = -784.60.
The fitted severities are: 783.11, 903.43, 1129.81, 1567.71, 1688.03, 1914.41.
Using a computer, the fitted parameters in part (b) are: 
β1 = 7.30933, β2 = 7.43082, β3 = 7.61246, β4 = -0.620811.
The fitted severities are: 803.13, 906.88, 1087.51, 1494.17, 1687.20, 2023.24.
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3.88.  Adding vehicle type adds 10 - 1 = 9 parameters to the model.

Test statistic is: F = DS - DB
(number of added parameters) φ̂B

 = (1848.5 - 1833.0) / 9
 0.93

 = 1.852.

The number of degrees of freedom in the numerator is 9.
The number of degrees of freedom in the denominator is: 
number of observations minus the number of parameters in the bigger model 
= 2000 - 23 = 1977.
We compare the test statistic to an F-distribution with 9 and 1977 degrees of freedom.
The null hypothesis is to use the simpler model, the one without vehicle type.
The alternate hypothesis is to use the more complex model.
We reject the null hypothesis at 5% if the test statistic is bigger than the 5% critical value, which 
is where the F-distribution is 95%. 
Comment: Using a computer, the p-value of this test is 5.5%.
Thus we would not reject the null hypothesis at 5%.
If we reduced the number of vehicle type categories by combining some of the 10 categories we 
used, it might turn out that now we should use vehicle type at the 5% significance level.

3.89.  Ignoring the loglikelihood of the saturated model, which is a constant,
BIC = Scaled Deviance + (number of parameters) ln[250].
For example, BIC = 1679.1 + 6 ln[250] = 1712.23.

Model Number of Parameters Scaled Deviance BIC

A 6 1679.10 1712.23
B 8 1666.40 1710.57
C 10 1655.90 1711.11
D 12 1646.20 1712.46
E 14 1634.50 1711.80

Since BIC is smallest for model B, model B is preferred.

3.90.  The difference between the yellow univariate line and the green GLM line, which better 
represents the underlying reality, arises from correlation between policy duration shown in the 
graph and the two other factors in the model.
Comment: One does not have to understand the life insurance details in order to answer the 
question asked.

3.91.  exp[-0.3] - 1 = -25.9%.
Comment: For a logistic model: Odds = µ / (1 - µ).

3.92.  Female drivers age 31 to 59 in a rural territory have lower (process) variances than 
unmarried male drivers age 17 to 21 in an urban territory.
Therefore, the fitted model shifts to agree more closely with the observed values for the first 
group compared to the second group.
A GLM is more concerned with differences between observed and fitted where the (process) 
variances in observations are smaller. A GLM is less concerned with differences between 
observed and fitted where the variances in observations are larger.
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3.93.  The sensitivity is: 2000/5000 = 0.40. 
The specificity is: 70,000 / 80,000 = 0.875.
For this threshold, we graph the point: (1 - specificity , sensitivity) = (0.125, 0.40). 

3.94.  “Two standard errors from the parameter estimates are akin to a 95% confidence interval.
This means the GLM parameter estimate is a point estimate, and the standard errors show the 
range in which the modeler can be 95% confident the true answer lies within.”
Comment: See page 179 of Basic Ratemaking, on Exam 5.

3.95.  The Lorenz curve for the rating plan is determined as follows:
1. Sort the dataset based on the model predicted loss cost.  
2. On the x-axis, plot the cumulative percentage of exposures.
3. On the y-axis, plot the cumulative percentage of losses.
Draw a 45-degree line connecting (0, 0) and (1, 1), called the line of equality.
The Gini index is twice the area between the Lorenz curve and the line of equality. 

3.96.  ln(λ) = β0 + β1z. ⇒ λ = exp[β0 + β1z]. 

For the Poisson Distribution: f(y) = e-λ λy / y!.   

ln f(y) = -λ + yln(λ) - ln(y!) = -exp[β0 + β1z] + y(β0 + β1z) - ln(y!). 
The loglikelihood is the sum of the contributions from the three observations:
-exp[β0 + β1] - exp[β0 + 2β1] - exp[β0 + 3β1] + 4(β0 + β1) + 7(β0 + 2β1) + 8(β0 + 3β1) 
! - ln(4!) - ln(7!) - ln(8!).  
To maximize the loglikelihood, we set its partial derivatives equal to zero.
Setting the partial derivative with respect to β0 equal to zero:
0 = -exp[β0 + β1] - exp[β0 + 2β1] - exp[β0 + 3β1] + 19.
Setting the partial derivative with respect to b1 equal to zero:
0 = -exp[β0 + β1] - 2exp[β0 + 2β1] - 3exp[β0 + 3β1] + 42.
Thus we have two equations in two unknowns:
exp[β0 + β1]{1 + exp[β1] + exp[2β1]} = 19.
exp[β0 + β1]{1 + 2exp[β1] + 3exp[2β1]} = 42.
Dividing the second equation by the first equation:
{1 + 2exp[β1] + 3exp[2β1]}/{1 + exp[β1] + exp[2β1]} = 42/19. 
⇒ 19 + 38exp[β1] + 57exp[2β1] = 42 + 42exp[β1] + 42exp[2β1]. ⇒ 15exp[2β1] - 4exp[β1] - 23 = 0.
Letting v = exp[β1], this equation is: 15v2 - 4v - 23 = 0, with positive solution: 
v = (4 + 1396 )/30 = 1.3788.
exp[β1] = 1.3788. ⇒ β1 = 0.3212.
⇒  exp[β0] = 19/{exp[β1] + exp[2β1] + exp[3β1]} = 19/{1.3788 + 1.37882 + 1.37883} = 3.2197.
⇒ β0 = 1.1693.
λ = exp[β0 + β1z] = exp[β0] exp[β1]z = (3.2197)(1.3788z).
For z = 1, λ = 4.439.  For z = 2, λ = 6.121.  For z = 3, λ = 8.440.
Comment: An ordinary linear regression fit to these same observations turns out to be: 
y = 2.333 + 2x, with fitted values: 4.333, 6.333, and 8.333.
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3.97.  Examples include:
● Will it be cost-effective to collect the value of this variable when writing new and renewal 
business?
● Does inclusion of this variable in a rating plan conform to actuarial standards of practice and 
regulatory requirements?
● Can the electronic quotation system be easily modified to handle the inclusion of this variable 
in the rating formula?

3.98.  a. We would have one parameter for gender, two parameters for age, and two parameters 
for territory. In addition we would have a parameter related to the base level. 
A total of 6 parameters.
(2-1) + (3-1) + (3-1) + 1 = 6.
Sex      Age      Terr.  Base
b. A total of 6 parameters. The link function does not affect the number of parameters.
c. β0 is the intercept term that applies to all insureds.
β1 corresponds to Female.
β2 corresponds to Youthful.
β3 corresponds to Retired.
β4 corresponds to Suburban.
β5 corresponds to Rural.
(There are many other possible orders for the parameters.)
d. With 6 parameters, the design matrix has 6 columns.
e. With 20,000 cars, the design matrix has 20,000 rows.
f. The number combinations are: (2)(3)(3) = 18.  Thus the design matrix has 18 rows. 
(I have assumed that none of these cells is empty. 
I have assumed that there are no records with missing classification information.) 

3.99.  (a) The squared deviance residual for any given record is defined as that record’s 
contribution to the unscaled deviance, adjusted for the sign of actual minus predicted; the 
deviance residual is taken to be negative where actual is less expected, and positive where 
actual is more than expected.
(b) Intuitively, we can think of the deviance residual as the residual adjusted for the shape of the 
assumed GLM distribution, such that its distribution will be approximately normal if the assumed 
GLM distribution is correct.
(c) In a well-fit model, we expect deviance residuals to follow no predictable pattern, and be 
normally distributed, with constant variance. 
One could plot the deviance residuals versus the fitted values or versus an important predictor 
variable, in order to see whether there is a pattern.
We can check for the normality of the deviance residuals via either a histogram or q-q plot.
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3.100.  p/(1-p) = exp[β0 + β1X]. ⇒ 1/p - 1 = exp[-β0 - β1X]. ⇒ p = 1/ (1 + exp[-β0 - β1X]). 
⇒ 1 - p = exp[-β0 - β1X] / (1 + exp[-β0 - β1X]) = 1 / (1 + exp[β0 + β1X]).
For a Binomial with parameters m and p, f(n) = pn(1-p)m-n m! / {(n!)(m-n)!}.  
ln f(n) = n lnp + (m-n)ln(1-p) + ln(m!) - ln(n!) - ln[(m-n)!] = n ln[p/(1-p)] + m ln(1-p) + constants =
n(β0 + β1X) - m ln[(1 + exp[β0 + β1X])] + constants.

loglikelihood = ∑ni(β0 + β1Xi) - ∑mi ln[(1 + exp[β0 + β1Xi])] + constants.
Setting the partial derivatives of the loglikelihood with respect to β0 and β1 equal to zero:

0 = ∑ni - ∑mi exp[β0 + β1Xi]/(1 + exp[β0 + β1Xi]).

0 =  ∑niXi - ∑mi Xi exp[β0 + β1Xi]/(1 + exp[β0 + β1Xi]).

∑ni = 900 + 820 + 740 + 660 + 580 = 3700.

∑niXi  = (1)(900) + (2)(820) + (3)(740) + (4)(660) + (5)(580) = 10,300.
The first equation becomes:
3700 = 1000/(1 + exp[-β0 - β1]) + 900/(1 + exp[-β0 - 2β1]) + 800/(1 + exp[-β0 - 3β1])
! ! + 700/(1 + exp[-β0 - 4β1]) + 600/(1 + exp[-β0 - 5β1]).
The second equation becomes:
10300 = 1000/(1 + exp[-β0 - β1]) + 1800/(1 + exp[-β0 - 2β1]) + 2400/(1 + exp[-β0 - 3β1])
! ! + 2800/(1 + exp[-β0 - 4β1]) + 3000/(1 + exp[-β0 - 5β1]).
Comment: An example of a Logistic Regression.
Using a computer, the maximum likelihood fit is: β0 = 1.88543 and β1 = 0.245509.

The covariance matrix of the fitted parameters is: 
β0
β1

  0.0154836 -0.00501396
-0.00501396 0.00212092

⎛

⎝⎜
⎞

⎠⎟
.

Thus the standard error of β0 is: 0.0154836  = 0.1244,
and the standard error of β1 is: 0.00212092  = 0.04605.
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Here is a graph of the data, the fitted curve, and 95% confidence intervals:

! 1 2 3 4 5 6
years

0 .88

0 .90

0 .92

0 .94

0 .96

p

3.101.  φ is the dispersion parameter, which scales the variance.
ωi is a (prior) weight, representing the amount of data we have for observation i; the variance is
inversely proportional to the volume of data.

3.102. & 3.103.  f(y) = exp[-(y - µ)2/(2σ2)] / {σ 2π }.  
ln f(Yi) = -(Yi - β0 - β1Xi)2/(2σ2) - ln(σ) - ln(2π)/2.
Loglikelihood is:  -∑(Yi - β0 - β1Xi)2/(2σ2) - n ln(σ) -  n ln(2π)/2.
Set the partial derivative of the loglikelihood with respect to β0 equal to zero:
0 = ∑(Yi - β0 - β1Xi)/σ2. ⇒ ∑Yi  = nβ0 + β1∑Xi. ⇒ β0 = 

� 

Y  - β1

� 

X .
Set the partial derivative of the loglikelihood with respect to β1 equal to zero:
0 = ∑Xi(Yi - β0 - β1Xi)/σ2. ⇒ ∑XiYi = β0∑Xi +  β1∑Xi2. ⇒ ∑XiYi  = (Y  - β1X )∑Xi +  β1∑Xi2.
⇒ β̂ 1 = {∑XiYi  - Y∑Xi} / {∑Xi2 - X∑Xi} = {255 - (10)(24)} / {174 - (6)(24)} = 15/30 = 0.5.

⇒ ^β 0 = 

� 

Y  - ^β 1X  = 10 - (0.5)(6) = 7.
Comment: Matches the linear regression model with an intercept. 
For example, in deviations form:

� 

X  = 24/4 = 6.   x = X - 

� 

X  = -4, -1, 2, 3.  

� 

Y  = 40/4 = 10.   y = Y - 

� 

Y  = 0, -4, 1, 3.
^
β  = ∑xiyi / ∑xi2 = 15/30 = 0.5.   α̂  = Y  - ^β X  = 10 - (0.5)(6) = 7.
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3.104.  Set the partial derivative of the loglikelihood with respect to σ equal to zero:
0 = ∑(Yi - β0 - β1Xi)2/σ3 - n/σ.  ⇒ σ2 = ∑(Yi - β0 - β1Xi)2/n = ∑(Yi - 7 - (0.5)Xi)2/4 =
{10 - 7 - (0.5)(2)}2 + {6 - 7 - (0.5)(5)}2 + {11 - 7 - (0.5)(8)}2 + {13 - 7 - (0.5)(9)}2

4
 = 18.5/4 = 4.625. 

⇒ σ̂  = 4.625  = 2.15.

3.105. & 3.106.  Let x = X - X  = -4, -1, 2, 3, and  y = Y - Y  = 0, -4, 1, 3.
Then, ∑XiYi  - Y∑Xi = ∑XjYj  - ∑Yj∑Xi/n = ∑Yj(Xj - X ) = ∑Yjxj.
Also, ∑Xi2 - X∑Xi  = ∑Xi(Xi - X ) = ∑Xixi = ∑(Xi - X )xi + ∑Xxi = ∑xi2 + X∑xi = ∑xi2 + X (0) 
= ∑xi2. 
β̂ 1 = {∑XiYi  - Y∑Xi} / {∑Xi2 - 

� 

X ∑Xi} = ∑Yixi /∑xi2.  

Var[ β̂ 1] = Var[∑Yixi /∑xi2] = ∑Var[Yixi]/{∑xi2}2 = ∑xi2Var[Yi] / {∑xi2}2 = σ2 ∑xi2/{∑xi2}2 = σ2/∑xi2 

= 4.625/30 = 0.1542.  StdDev[ β̂ 1] = 0.1542  = 0.393.

β̂ 0 = Y  -  β̂ 1X  = (Y1 + Y2 + Y3 + Y4)/4 - (∑Yixi /∑xi2)(6) =  
(Y1 + Y2 + Y3 + Y4)/4 - (-4Y1 - Y2 + 2Y3 + 3Y4)(6/30) = 1.05Y1 + 0.45Y2 - 0.15Y3 - 0.35Y4.
Recalling that the Yi are independent and each have variance σ2:
Var[ β̂ 0] = σ2(1.052 + 0.452 + 0.152 + 0.352) = 1.45σ2 = (1.45)(4.625) = 6.706.

StdDev[β̂ 0] = 6.706  = 2.59.
Comment: Beyond what you should be asked on your exam.

One can show in general that Var[β̂ ] = σ2 /∑xi2 and Var[ α̂ ] = σ2 ∑Xi2 / (N∑xi2). 
While the maximum likelihood results are similar, they do not match linear regression:

� 

Ŷ = 

� 

α̂  + β̂ X = 8, 9.5, 11, 11.5.    ε̂  = Y - ^Y  = 2, -3.5, 0, 1.5.   ESS = ∑ ε̂i 2 = 18.5.

s2 = ESS / (N - 2) = 18.5 / (4 - 2) = 9.25.
Var[ β̂ ] = s2 / ∑xi2 = 9.25/30 = 0.3083.   sβ̂  = 0.3083  = 0.555.

Var[ α̂ ] = s2∑Xi2 / (N∑xi2) = (9.25)(174) / ((4)(30)) = 13.41.  sα̂  = 13.41 = 3.66.
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3.107.  Since they have all been fit to the same data and have the same number of parameters, 
the model with the smallest Scaled Deviance is best. This is Model D.
Comment: If we were to apply either AIC or BIC, in this case the ranks of the models would be 
the same as that of their scaled deviances.

3.108.  When the variance is greater than the mean we can use an overdispersed Poisson 
with φ > 1.
Var[Yi] = φ E[Yi].  For φ > 1, variance is greater than the mean. While this does not correspond to 
the likelihood of any exponential family, otherwise the GLM mathematics works.
Using an overdispersed Poisson (ODP), we get the same estimated betas as for the usual 
Poisson regression. However, the standard errors of all of the estimated parameters are 
multiplied by φ . 
Comment: When the variance is greater than the mean, one could use a Negative Binomial 
Distribution, which has a variance greater than its mean. 
Often the results of using an overdispersed Poisson and a Negative Binomial will be similar.

3.109. While a 5% probability value may seem small, it allows for a 1-in-20 chance of a variable 
being accepted as significant when it is not. Since in a typical insurance modeling project we are 
testing many variables, this threshold may be too high to protect against the possibility of 
spurious effects making it into the model.
For example, if we are testing the potential usefulness of 40 possible predictor variables, then if 
we use a p-value of 5%, even if none of the variables actually predict the outcome, on average 
two of these 40 variables will be selected as significant.
Comment: See Section 2.3.2 of Generalized Linear Models for Insurance Rating.
“Spurious correlations exist when the historical correlation between two variables is random or 
coincidental. In these cases, one variable cannot reliably be used to inform a projection of the 
other variable going forward. For example, over the past year the number of California 
Department of Insurance rate regulation actuaries has increased, as has California average 
rainfall. Unfortunately, however, we cannot expect to influence future California rainfall by hiring 
additional actuaries.”
Quoted from “Predictive Analytics: Regulatory Review” by Rachel Hemphill 
in the AAA Casualty Quarterly, Summer 2017. 

3.110.  The partial residual plot seems linear; thus, no action is indicated.

3.111.  A potential problem may exist where two or more predictors in a model may be strongly 
predictive of a third, a situation known as multicollinearity. Instability problems may result, since 
the information contained in the third variable is also present in the model in the form of the 
combination of the other two variables. However, the variable may not be highly correlated with 
either of the other two predictors individually, and so this effect will not show up in a correlation 
matrix, making it more difficult to detect.
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3.112.  Territories are not a good fit for the GLM framework. 
One should include the territory relativities produced by the separate model as an offset in the 
GLM used to determine classification relativities. Similarly, one should include classification 
relativities produced by the GLM as an offset in the separate model used to determine territory 
relativities.

3.113.  A hold-out sample is data that was not used in the development of the model so that it
could be used to test the effectiveness of the model. (This could either be a random sample of 
the original data, or an additional year of data.) One compares the expected outcome of the 
model with results on the hold-out sample. The extent to which the model results track closely to 
results on the hold-out sample for a large part of the portfolio is an indication of how well the 
model validates.

3.114.  You can use age groups, but probably want to group fewer ages together for the younger 
ages. (Unfortunately, the volume of data is smaller for the very youngest ages, so there is a 
trade-off between homogeneity and credibility.) For ages above about 25, the affect of gender is 
relatively small and similar by age. In contrast, for younger ages the affect of gender is large and 
differs by age. Thus a simple multiplicative model with a single relativity for male compared to 
female will not work. One would need to have a gender relativity that varied by age. (This may 
be possible to accomplish this by having an interaction term in the GLM.) 

3.115. (a) For z1 = 1 and z2 = 30, renewal probability is: 
Exp[0.6 + (0.05)(1) + (0.02)(30)]

1 + Exp[0.6 + (0.05)(1) + (0.02)(30)]
 = 0.7773.

For z1 = 10 and z2 = 30, renewal probability is: 
Exp[0.6 + (0.05)(10) + (0.02)(30)]

1 + Exp[0.6 + (0.05)(10) + (0.02)(30)]
 = 0.8455.

0.7773 / 0.8455 = 0.919.
(b) For z1 = 1 and z2 = 50, renewal probability is: 

Exp[0.6 + (0.05)(1) + (0.02)(50)]
1 + Exp[0.6 + (0.05)(1) + (0.02)(50)]

 = 0.8389.

For z1 = 10 and z2 = 50, renewal probability is: 
Exp[0.6 + (0.05)(10) + (0.02)(50)]

1 + Exp[0.6 + (0.05)(10) + (0.02)(50)]
 = 0.8909.

0.8389 / 0.8909 = 0.942.
Comment: Not intended as a realistic model of policy renewal.
In general for a particular GLM, the relativities for one predictor variable can depend on the 
level(s) of the other predictor variable(s).
This model was based on the logit link function. If instead the log link function had been used, 
the model would have been multiplicative, and the indicated multiplicative relativities would not 
have depended on the other predictor variable. If instead the identity link function had been 
used, the model would have been additive, and the indicated additive relativities would not have 
depended on the other predictor variable.
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3.116.  The deviance residuals seem to decrease on average with X3.  
The lack of independence of the deviance residuals and X3 is not good. 
One should investigate refining the model.

3.117.  Let X0 correspond to the constant term.  
Let X1 be 1 if there is child.  Let X2 be the years of education.

a.  X = 

1 0 12
1 0 14
1 0 15
1 0 16
1 0 17
1 1 10
1 1 11
1 1 13
1 1 15
1 1 16

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

! ! Y =  

1
0
1
0
1
0
0
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

b.  p/(1-p) = exp[β0 + β1X1 + β2X2]. ⇒ 1/p - 1 = exp[-(β0 + β1X1 + β2X2)]. 
⇒ p = 1/ (1 + exp[-(β0 + β1X1 + β2X2)]). 
⇒ 1 - p = exp[-(β0 + β1X1 + β2X2)] / (1 + exp[-(β0 + β1X1 + β2X2)]) 
= 1 / (1 + exp[β0 + β1X1 + β2X2]).
For a Bernoulli (yes/no) with parameter p, f(y) = py(1-p)1-y.  
ln f(y) = y lnp + (1-y)ln(1-p) = y ln[p/(1-p)] + ln(1-p) =
y(β0 + β1X1 + β2X2) - ln[1 + exp[β0 + β1X1 + β2X2]].

loglikelihood = ∑yi(β0 + β1X1i + β2X2i) - ∑ln[1 + exp[β0 + β1X1i + β2Xi2]].
Setting the partial derivatives of the loglikelihood with respect to β0, β1, and β2 equal to zero:

0 = ∑yi - ∑exp[β0 + β1X1i + β2X2i]/(1 + exp[β0 + β1X1i + β2X2i]).

0 = ∑yiX1i - ∑X1i exp[β0 + β1Xi]/(1 + exp[β0 + β1X1i + βb2X2i]).

0 = ∑yiX2i - ∑X2i exp[β0 + β1Xi]/(1 + exp[β0 + β1X1i + β2X2i]).

∑yi = 1 + 0 + 1 + 0 + 1 + 0 + 0 + 1 + 0 + 1 = 5.

∑yiX1i  = 2.

∑yiX2i  = 12 + 15 + 17 + 13 + 16 = 73.
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The first equation becomes:
5 = 1/(1 + exp[-β0 - 12β2]) + 1/(1 + exp[-β0 - 14β2]) + 1/(1 + exp[-β0 - 15β2]) 
! + 1/(1 + exp[-β0 - 16β2]) + 1/(1 + exp[-β0 - 17β2]) + 1/(1 + exp[-β0 - β1 - 10β2])
! + 1/(1 + exp[-β0 - β1 - 11β2]) + 1/(1 + exp[-β0 - β1 - 13β2]) + 1/(1 + exp[-β0 - β1 - 15β2])
! + 1/(1 + exp[-β0 - β1 - 16β2]).
The second equation becomes:
2 = 1/(1 + exp[-β0 - β1 - 10β2]) + 1/(1 + exp[-β0 - β1 - 11β2]) + 1/(1 + exp[-β0 - β1 - 13β2]) 
! + 1/(1 + exp[-β0 - β1 - 15β2]) + 1/(1 + exp[-β0 - β1 - 16β2]).
The third equation becomes:
73 = 12/(1 + exp[-β0 - 12β2]) + 14/(1 + exp[-β0 - 14β2]) + 15/(1 + exp[-β0 - 15β2]) 
! + 16/(1 + exp[-β0 - 16β2]) + 17/(1 + exp[-β0 - 17β2]) + 10/(1 + exp[-β0 - β1 - 10β2])
! + 11/(1 + exp[-β0 - β1 - 11β2]) + 13/(1 + exp[-β0 - β1 - 13β2]) 
! + 15/(1 + exp[-β0 - β1 - 15β2]) + 16/(1 + exp[-β0 - β1 - 16β2]).
Comment: In a practical application, one would have at least several hundred data points.
Using a computer, the fitted parameters are:
β0 = -3.65238, β1 = -0.373673, β2 = 0.275467.
The fitted probabilities of workplace participation are: 
0.4142, 0.5509, 0.6177, 0.6803, 0.7370, 0.2190, 0.2697, 0.3906, 0.5265, 0.5942.
For example, with a child and 10 years of education, the estimated probability of participating in 
the workforce is: 

exp[-3.65238 - (1)(0.373673) + (10)(0.275467)]
1 + exp[-3.65238 - (1)(0.373673) + (10)(0.275467)]

 = exp[-1.271383]
1 + exp[-1.271383]

 = 21.90%.

3.118.  1. The variables to be considered.
2. The distributional form of the errors.
3. The link function. 
4. Whether he is modeling frequency, severity, or pure premium.
5. Whether he will be modeling all of the perils together or he will be modeling one of the major
 ! perils separately.
Comment: There are probably other good answers.
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3.119.  1. Predictive accuracy: for the right panel graph, the plotted loss costs correspond more 
closely between the two lines than for the left panel graph, indicating that the proposed model 
seems to predict actual loss costs better than the current rating plan does.
2. Monotonicity: the current plan has a reversal in the 6th decile, whereas the model
has no significant reversals.
3. Vertical distance between the first and last quantiles: the spread of actual loss costs for the 
current plan is about 0.6 to 1.2, which is not very much. The spread of the proposed model is 
larger.
Thus, by all three metrics, the new plan outperforms the current one.
Comment: Graphs taken from “Introduction to Predictive Modeling Using GLMs A Practitioner’s 
Viewpoint,” a presentation by Dan Tevet and Anand Khare.

3.120.  Modeling personal auto probability of policy renewal.
Modeling fraud on claims.
Comment: Many other possible answers.

3.121.  exp[8.8 + (-0.03)(30) - 0.15] = 2322.

3.122.  mean = exp[8.8 + (-0.03)(40)] = 1998.  Variance = φ mean2 = (0.3)(19982) = 1,197,601.

3.123.  Approximately 95% of the time the actual relativity should be within the bands two 
standard errors on either side of the parameter estimate. 
In the first graph the bands are relatively narrow. Also the relativities display an increase with 
vehicle symbol, which makes sense. Vehicle symbol appears to be a significant factor for the 
first model.
In the second graph, the bands are wide. Also the relativities display no consistent pattern with 
vehicle symbol. Vehicle symbol does not appear to be a significant factor for the second model.
There are no parameter estimates more than two standard errors from zero. 
In other words, the results are consistent with a multiplicative relativity of one for all symbols.
Comment: The graphs are taken from “A Practitioner's Guide to Generalized Linear Models,“
by Duncan Anderson, Sholom Feldblum, Claudine Modlin, Doris Schirmacher, Ernesto 
Schirmacher, and Neeza Thandi. We note that in the first graph the one-way (univariate 
analysis) comes up with different relativities than the GLM, presumably because vehicle symbol 
is correlated with other significant predictor variables in the GLM. The bottom righthand of the 
original of the first graph shows a p-value of 0%, indicating that vehicle symbol is significant. 
The original of the second graph shows a p-value of 52.5% indicating that vehicle symbol is not 
significant in this second model. 

3.124.  One way to combine separate models by peril in order to get a model for all perils:
1. Use the separate models by peril to generate predictions of expected loss due to each peril 
for some set of exposure data. 
2. Add the peril predictions together to form a combined loss cost for each record.
3. Run a model on that data, using the combined loss cost calculated in Step 2 as the target, 
! and the union of all the individual model predictors as the predictor variables.
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3.125. (a) µ = Exp[αi + βx] = Exp[αi] Exp[βx].
This is a multiplicative model, with relativities for gender and relativities for age.
The age relativities are the same for males and females.
If β < 0, then the relative frequencies decline exponentially with age.
(b) µ = Exp[αi + βix] = Exp[αi] Exp[βix].
Similar to the previous model, except now the age relativities differ by gender.
For example, the relativity for age 20 relative to age 30 is:
Exp[20βi] / Exp[30βi] = Exp[-10βi], which differs by gender.
(If β1 = β2, then this reduces to the previous model.)
Comment: Even for βi < 0, this is not a realistic model of expected claim frequencies by driver 
age. Instead one would group the ages into for example, 17-20, 21-24, etc., and treat the age 
groups as categorical variables.

3.126.  di2 = 2 {yi ln[ yi
ŷi
] + (mi - yi) ln[ mi - yi

m i - ŷi
]}  = 2 {(3) ln[3/1.6] + (8 - 3) ln[(8-3)/(8-1.6)]} 

= 1.3031.  Since 3 - (8)(0.2) > 0, we take di > 0.  di = 1.3031  = 1.142.

3.127.  “One major drawback of this approach is that the break points must be selected by the 
user. Generally, break points are initially guesstimated by visual inspection of the partial residual 
plot, and they may be further refined by adjusting them to improve some measure of model fit 
such as deviance. However, the GLM provides no mechanism for estimating them 
automatically.”
“Another potential downside is that while the fitted response curve is continuous, its first 
derivative is not—in other words, the fit line does not exhibit the smooth quality we would 
expect, but rather abruptly changes direction at our selected breakpoints.”
Comment: Quoted from Section 5.4.4 of Generalized Linear Models for Insurance Rating.
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3.128.  Sort the data based on the loss ratio predicted by the proposed model.

Insured Actual
Loss Cost

Actual
Loss Ratio

Model
Loss Cost

Model
Loss Ratio

Earned Premium at
Present Rates

1 28,000 65.1% 26,000 60.5% 43,000

2 25,000 51.0% 32,000 65.3% 49,000

3 42,000 73.7% 37,000 64.9% 57,000

4 36,000 59.0% 43,000 70.5% 61,000

5 48,000 72.7% 41,000 62.1% 66,000
For the proposed model, the order of predicted loss ratios is: 1, 5, 3, 2, 4.
The corresponding actual loss ratios are: 65.1%, 72.7%, 73.7%, 51.0%, 59.0%.

Comment: Similar to 8, 11/19, Q.2a.  
One would work with many more than 5 observations; I would not draw any conclusions based 
on such a small amount of data. 

3.129. D.  Histogram D most closely matches the Normal Distribution.

3.130.  The results of a GLM depend on the choice of link functions. So perhaps the two models 
have different link functions. The results of a GLM depend on the choice of predictor variables. 
So perhaps the two models have different sets of predictor variables other than driver age.
The results of a GLM depend on the choice of the assumed distributional form of the errors. So 
perhaps the two models have different distributional forms of their errors.
Comment: Commonly the actuary analyzes the relativities for driver age assuming all of the 
other predictor variables in the GLM are at the base level. If one varies the levels of the other 
predictor variables in the GLM, then relativities between driver ages will also usually vary.
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3.131.  Plot (Φ-1[i/37)], x(i)). 
Q9/37 = Q0.243 = -0.696, since Φ[-0.696] = 0.243.
Thus the plotted point is: (-0.696, 0.004).

3.132.  A useful statistic for detecting multicollinearity is the variance inflation factor (VIF). The 
VIF for any predictor is a measure of how much the squared standard error for the predictor is 
increased due to the presence of collinearity with other predictors. It is determined by running a 
linear model for each of the predictors using all the other predictors as inputs, and measuring 
the predictive power of those models.
A common statistical rule of thumb is that a VIF greater than 10 is considered high. However, 
where large VIFs are indicated, it is important to look deeper into the collinearity structure in 
order to make an informed decision about how best to handle it in the model.

3.133.  The new categorical variable has five categories, so adds 4 degrees of freedom.

Test statistic is: F = DS - DB
(number of added parameters) φ̂B

 = (2196.1 - 2179.3) / 4
 2.09

 = 2.010.

The number of degrees of freedom in the numerator is 4.
The number of degrees of freedom in the denominator is: 
number of observations minus the number of parameters in the bigger model.
We compare the test statistic to an F-distribution.
The null hypothesis is to use the simpler model.
We reject the null hypothesis if the test statistic is big. 

3.134.  Cross Validation is another technique for data splitting.
Split the data into for example 10 groups. Each group is called a fold. For each fold:
• Train the model using the other folds.
• Test the model using the given fold.
Several models can be compared by running the procedure for each of them on the same set of 
folds and comparing their relative performances for each fold.
However, cross validation is often of limited usefulness for most insurance modeling 
applications.Using cross validation in place of a holdout set is only appropriate where a purely 
automated variable selection process is used. The actuary usually applies a great deal of care 
and judgment in selecting the variables to be included in the model. If using cross validation, this 
actuarial judgement should be applied separately to each of the data sets created by leaving out 
one fold. This is not really practical.
For most actuarial modeling, the use of a holdout set is preferred to the use of cross
validation.
Comment: See Section 4.3.4 of Generalized Linear Models for Insurance Rating. 
Purely automated variable selection processes should be used with appropriate caution.

3.135.  A common statistical rule of thumb is that a VIF greater than 10 is considered high. 
Thus, there is probably multicollinearity related to Weight; two or more predictors in the model 
are probably strongly predictive of Weight. This may cause instability problems with the model.
This situation should be investigated further. 
It may help to either remove Weight from the model or to preprocess the data using 
dimensionality reduction techniques such as principal components analysis.
Comment: The VIF of 6.33 for Body Surface Area may also warrant some investigation.
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3.136.  In the first graph for liability losses, the number of children seems to have a significant 
impact on frequency. The 95% confidence intervals do not include a log of the multiplier of 0; in 
other words the multiplier is significantly different from one. Also while one child increases the 
frequency compared to none, two children also increase the frequency compared to one. It 
seems as if the number of children in the household is a useful variable for modeling liability 
frequency for Homeowners.
In the second graph for wind losses, the number of children seems to have a insignificant impact 
on frequency. The 95% confidence intervals do include a log of the multiplier of 0; in other words 
the multiplier is not significantly different from one. Also while one child increases the frequency 
compared to none, two children decreases the frequency compared to one. The number of 
children in the household is not a useful variable for modeling wind frequency for Homeowners.
Comment: There is no logical relationship between the number of children and wind losses.
A child (or any relative) who lives in the house is covered for any liability claim he or she causes.
Also having children in the house may lead to more neighborhood children coming on your 
property with the potential for liability claims if they are injured on your property. Thus there is 
some logical relationship between the number of children in the household and the frequency of 
liability claims for Homeowners.
Presumably, the liability relativity for three children would be higher than for two children.
(Three children was not shown in the graph in order to keep things simple.)
One would want to apply statistical tests to see if the number of children in the household is a 
useful variable for modeling liability frequency. Also one would want to check the consistency 
over time of the indicated relativities.

3.137.  With a Normal error function and an identity link function, this is the same as a multiple 
regression. The squared error is: 
! 800 (β1 + β2 + β3 - 700,000/800)2 + 600 (β2 + β3 - 400,000/600)2 
! + 700 (β1 + β3 - 500,000/700)2 + 500 (β3 - 300,000/500)2.
We are given that β3 = 570.356, thus the squared error is: 
800 (β1 + β2 - 304.644)2 + 600 (β2 - 96.311)2 + 700 (β1 - 143.930)2 + 500 (-29.644)2.
Setting the partial derivative with respect to β1 equal to zero: 
0 = 1600 (β1 + β2 - 304.644) + 1400 (β1 - 143.930). ⇒ 3000 β1 + 1600 β2 = 688,932.
Setting the partial derivative with respect to β2 equal to zero: 
0 = 1600 (β1 + β2 - 304.644) + 1200 (β2 - 96.311). ⇒ 1600 β1 + 2800 β2 = 603,004.
⇒ β2 = (603,004 - 1600 β1) / 2800.
Plugging back into the first equation: 3000 β1 + 1600 (603,004 - 1600 β1) / 2800 = 688,932.

⇒ β1 = (2800)(688,932) - (1600)(603,004)
(3000)(2800) - (1600)(1600)

 = 964,203,200 / 5,840,00 = 165.103. 

⇒ β2 = 121.014.
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3.138.  BIC = (-2) (maximum loglikelihood) + (number of parameters)ln[60].
For example, BIC = (-2)(-220.18) + 2 ln[60] = 448.55.

Model Number of Parameters Loglikelihood BIC

A 2 -220.18 448.55
B 3 -217.40 447.08
C 4 -214.92 446.22
D 5 -213.25 446.97
E 6 -211.03 454.81

Since BIC is smallest for model C, model C is preferred.

3.139.  One should also perform a statistical test to compare a model with year to a simpler 
model without year.
Before excluding year as a variable, it would be better to first try a model where you group the 
years into fewer categories, for example: 2010-2011, 2012, 2013-2014.
(We may not have enough data from each year in order to be statistically confident of separate 
coefficients by year.) 
Then if after fitting the new model the revised coefficients for years are still not significant, one 
could exclude year from the model.
Comment: The actuary would want to determine whether the pattern between years of the fitted 
coefficients makes any sense to him given his knowledge of the situation being modeled.
Statistical tests are important, but just one tool. Actuarial judgement is also important.
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3.140.  The third plotted point is: (0.0353, 0.0079).
The last plotted point is: (0.9997, 0.9884).
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Comment: In my graph, I have had the computer join the plotted points.
Information was taken from the 1998 Massachusetts Wage Distribution Table.
The Gini index is twice the area between the Lorenz Curve and the Line of Equality.
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3.141.  Simple quantile plots are created via the following steps:
1. Sort the dataset based on the Model A predicted loss cost (from smallest to largest).
2. Bucket the data into quantiles, such that each quantile has the same volume of exposures. 
Common choices are quintiles (5 buckets), deciles (10 buckets), or vigintiles (20 buckets).
3. Within each bucket, calculate the average predicted pure premium (predicted loss
per unit of exposure) based on the Model A predicted loss cost, and calculate the
average actual pure premium.
4. Plot, for each quantile, the actual pure premium and the pure premium predicted
by Model A.
5. Repeat steps 1 through 4 using the Model B predicted loss costs. 
There are now two quantile plot; one for Model A and one for Model B.
6. Compare the two quantile plots to determine which model provides better lift.
In order to determine the “winning” model, consider the following 3 criteria:
1. Predictive accuracy. How well each model is able to predict the actual pure premium in each 
quantile.
2. Monotonicity. By definition, the predicted pure premium will monotonically increase as the 
quantile increases, but the actual pure premium should also increase (though small reversals 
are okay).
3. Vertical distance between the first and last quantiles. The first quantile contains the risks 
that the model believes will have the best experience, and the last quantile contains the risks 
that the model believes will have the worst experience. A large difference (also called “lift”) 
between the actual pure premium in the quantiles with the smallest and largest predicted loss 
costs indicates that the model is able to maximally distinguish the best and worst risks.
Comment: See Section 7.2.1 of Generalized Linear Models for Insurance Rating.

3.142.  (a) For example, using a discrimination threshold of 25%, one would be predicting fraud 
for any claim for which the GLM says the probability of fraud is greater than 25%.
Alternately, choose a specific probability level, called the discrimination threshold, above which 
we will investigate the claim for fraud and below which we will not. This determination may be 
thought of as the model’s “prediction” in a binary (i.e., fraud/no fraud) sense.
(b) Using a lower threshold would detect more of the fraudulent claims, at the cost of also having 
to investigate more claims which turned out not to be fraudulent. Using a higher threshold would 
detect fewer of the fraudulent claims, but we would have to investigate fewer claims which 
turned out not to be fraudulent.
Alternately, there is trade-off: a lower threshold results in a higher sensitivity (true positive rate), 
while a higher threshold results in a higher specificity (and thus a lower false positive rate).
Comment: Similar to 8, 11/17, Q.6d.
See Section 7.3.1 of Generalized Linear Models for Insurance Rating.
“The selection of a discrimination threshold involves a trade-off: a lower threshold will result in 
more true positives and fewer false negatives than a higher threshold, but at the cost of more 
false positives and fewer true negatives.”
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3.143.  The mean modeled claim counts are:
Terr. A Terr. B

Male 24,000 exp[β0] 15,000 exp[β0 + β2]

Female 20,000 exp[β0 + β1] 13,000 exp[β0 + β1 + β2]

The likelihood function of a Poisson is : ln f(yi; µi)∑  = {-µi + yi ln[µi] - ln[yi!]} ∑ .

The loglikelihood ignoring terms that do not depend on the betas is: 
-24,000 exp[β0] + 1200 (β0) - 20,000 exp[β0 + β1] + 800 (β0 + β1)  
!  - 15,000 exp[β0 + β2] + 1100 (β0 + β2) - 13,000 exp[β0 + β1 + β2] + 900 (β0 + β1 + β2).
Setting the partial derivative of the loglikelihood with respect to β1 equal to zero: 
- 20,000 exp[β0 + β1] + 800 - 13,000 exp[β0 + β1 + β2] + 900 = 0.
Given β0 = -3.0300:  1700 = 966.3 exp[β1] + 628.1 exp[β1] exp[β2] .
Setting the partial derivative of the loglikelihood with respect to β2 equal to zero: 
- 15,000 exp[β0 + β2] + 1100 - 13,000 exp[β0 + β1 + β2] + 900 = 0.

� 

⇒  2000 = 724.7 exp[β2] + 628.1 exp[β1] exp[β2]. 
Subtracting two equations: 300 = 724.7 exp[β2] - 966.3 exp[β1].

� 

⇒  exp[β2] = 0.4140 + 1.3334 exp[β1].

� 

⇒ 1700 = 966.3 exp[β1] + 628.1 exp[β1] (0.4140 + 1.3334 exp[β1]).
Let x = exp[β1]. 

� 

⇒ 1700 = 966.3 x + 628.1 x (0.4140 + 1.3334 x).

� 

⇒ 837.5x2 + 1226.3 x - 1700 = 0. 

� 

⇒  x = -1226.3 ±  1226.32 - (4)(837.5)(-1700)
(2)(837.5)

 = 0.8697, taking the positive root.

� 

⇒ β1 = ln(0.8697) = -0.1396.

� 

⇒ exp[β2] = 0.4140 + 1.3334 exp[β1] = 0.4140 + (1.3334)(0.8697) = 1.5737.

� 

⇒ β2 = ln(1.5737) = 0.4534. 
Expected frequency of a female risk in Territory B is: 
exp[β0 + β1 + β2] = exp[-3.0300 - 0.1396 + 0.4534] = 6.61%. 
Comment: Similar to 8, 11/15, Q.3.
Using a computer, without being given β0, the maximum Iikelihood fit is:
β̂0  = -3.02999, β̂1  = -0.139599, β̂2  = 0.453335.
The mean modeled frequencies are:
! ! Territory A ! ! ! ! ! Territory B 
Male !      exp[-3.02999] = 4.83% !! ! exp[-3.02999 + 0.453335] = 7.60%
Female    exp[-3.02999 - 0.139599] = 4.20%! exp[-3.02999 - 0.139599 + 0.453335] = 6.61%
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3.144.  When the effect of one predictor depends on the level of another predictor, and 
vice-versa, such an relationship is called an interaction.
An example of an interaction term: X1X2.
In this example, g(µ) = β0 + β1X1 + β2X2 + β3 X1X2 + ... 
The effect of X1 depends on the level of X2 and vice-versa.
Comment: See Section 5.6 of Generalized Linear Models for Insurance Rating. 
The actuary can use the GLM significance statistics in order to determine whether the inclusion 
of an interaction significantly improves the model.
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3.145. (a) The percent of losses for A are 50%.  So the Lorenz Curve has the point (50, 50).

!
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The Lorenz curve is equal to the line of equality, and thus the area between them is zero.
The Gini Index is twice that, or zero.
(b) The percent of losses for A are 0%.  So the Lorenz Curve has the point (50, 0).

!
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The region between the Lorenz curve and the line of equality is a triangle of base 50% and 
height 100%, and thus area: (1/2)(50%)(100%) = 0.25.  The Gini Index is twice that, or 50%.
Comment: We looked at the two extreme cases, which will not occur in practice. 
Here is a graph of the Gini Index versus the percent of total actual losses in Class A:
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3.146.  The curve corresponding to the text labeled VA has more area under it, so it is better 
than the test labeled NE.

3.147.  The fitted parameter(s) are the same, while the standard errors are multiplied by 3.071.

The standard error of β̂ 1 is: 0.1978 3.071 = 0.3466.
95% confidence interval for β1: 5.624 ± (1.96) (0.3466) = 5.624 ± 0.679.
Comment: One could instead use: 5.624 ± (2) (0.3466) = 5.624 ± 0.693.

3.148. A simple quintile plot is a simple quantile plot with 5 buckets.
● Sort the dataset based on the model predicted pure premium from smallest to largest.
● Group the data into 5 buckets with equal volume.  
● Within each group, calculate the average predicted pure premium based on the model,
! and the average actual pure premium.
● Plot for each group, the actual pure premium and the predicted pure premium.

Since we are not given the overall average pure premium, I will plot the pure premiums relative 
to average.

The saturated model has as many predictors as data points. Thus for the saturated model, the 
predictions exactly match the observations for each record. 
The simple quintile plot:

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 520
 



The null model, has no predictors, only an intercept. Thus for the null model the prediction is the 
same for every record: the grand mean. 
Since every risk has the same prediction, one would assign them to buckets at random. 
Thus all of the actuals by quintile should be close to the grand mean, with small differences due 
to the randomness of assignments. The simple quintile plot:
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“A model that could be used in practice”, would have the actuals increase monotonically, have 
good but not perfect predictive accuracy, and a reasonably large vertical distance between the 
actuals in the first and last quintiles. A simple quintile plot:

Comment: Similar to 8, 11/07, Q. 5.
There are many possible examples of the last plot.
Since the records are ordered by predicted values, the records in each bucket change for each 
graph. Thus, actuals are not the same between the graphs.
Quintile plots are sorted by predicted values from smallest to largest value. Thus the predicted 
values must be monotonically increasing (or in the case of the null model equal). Actuals need 
not be monotonically increasing, although that is desirable.
In every graph, the average of the actuals should be the grand mean. 
In the final plot, the average of the predicteds should be close to if not equal to the grand mean; 
the GLM may have a small bias.
In the final plot, the predicted and actuals for the final quintile should each be less than in the 
saturated model. In the final plot, the predicted and actuals for the final quintile should each be 
more than in the null model.

3.149.  I prefer the Gamma model, since the standardized deviance residuals are much closer to 
being Normally Distributed.
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3.150.  Since the proposed model is not able to segment the data into lower and higher loss 
ratio buckets, the proposed model is not significantly outperforming the current rating plan.
Comment: See Section 7.2.3 of Generalized Linear Models for Insurance Rating. 

3.151.  AIC = (-2) (maximum loglikelihood) + (number of parameters)(2).
For example, AIC = (-2)(-9844.16) + (5)(2) = 19,698.32.

Model Number of Parameters Loglikelihood AIC

A 5 -9844.16 19,698.32
B 10 -9822.48 19,664.96
C 15 -9815.70 19,661.40

Since AIC is smallest for model C, model C is preferred.

3.152.  BIC = (-2) (maximum loglikelihood) + (number of parameters) ln[number of data points].
For example, BIC = (-2)(-9844.16) + 5 ln[5000] = 19730.91.

Model Number of Parameters Loglikelihood BIC

A 5 -9844.16 19,730.91
B 10 -9822.48 19,730.13
C 15 -9815.70 19,759.16

Since BIC is smallest for model B, model B is preferred.
Comment: Similar to 8, 11/16, Q.7. 
See Section 6.2.2 in Generalized Linear Models for Insurance Rating.
Most actuarial GLMs are fit to many more than 5000 data points.
“As most insurance models are fit on very large datasets, the penalty for additional parameters 
imposed by BIC tends to be much larger than the penalty for additional parameters imposed by 
AIC. In practical terms, the authors have found that AIC tends to produce more reasonable 
results. Relying too heavily on BIC may result in the exclusion of predictive variables from your 
model.”

3.153.  The first model does a better job of fitting the data and is thus preferred.
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3.154.  Sort the risks from best to worst based on the model predicted pure premium.

Risk Model P.P. Exposures Cumulative
Exposures

Cumulative
% of Exposures

2 1000 7 7 7%

8 2000 24 31 31%

5 3000 12 43 43%

3 4000 8 51 51%

4 5000 11 62 62%

6 6000 16 78 78%

1 7000 3 81 81%

7 8000 19 100 100%

Risk Exposures Actual 
P.P.

Actual
Losses

Cumulative
Losses

Cumulative
% of Losses

2 7 4000 28,000 28,000 5.6%

8 24 4000 96,000 124,000 24.8%

5 12 1000 12,000 136,000 27.2%

3 8 2000 16,000 152,000 30.4%

4 11 8000 88,000 240,000 48.0%

6 16 8000 128,000 368,000 73.6%

1 3 6000 18,000 386,000 77.2%

7 19 6000 114,000 500,000 100.0%

On the x-axis, plot the cumulative percentage of exposures.
On the y-axis, plot the cumulative percentage of actual losses.
The plotted points are: (0, 0), (7%, 5.6%), (31%, 24.8%), ... , (81%, 77.2%), (100%, 100%).

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 524
 



Line of Equality

(7, 5.6)

(31, 24.8)
(43, 27.2)

(51, 30.4)

(62, 48)

(78, 73.6)

(81, 77.2)

20 40 60 80 100
Percent of Expos

20

40

60

80

100
Precent of Losses

Comment: Similar to 8, 11/16, 5a.
The Gini index is twice the area between the Lorenz Curve and the line of equality.
The higher the Gini Index, the better the rating plan is at identifying risk differences.

3.155.   
Variable Number of Parameters

Vehicle Price 3
Vehicle Age 8 - 1 = 7
Driver age 2 - 1 = 1
Number of drivers 3 - 1 = 2
Gender 2 - 1 = 1
Interaction Gender & Driver Age 1

Number of parameter is: 3 + 7 + 1 + 2 + 1 + 1 = 15.
Comment: Similar to CAS S, 11/15, Q.35.
A model with only Vehicle Price would involve: β0 + β1 (vp) + β2 (vp)2.
The interaction of gender and driver age only uses one parameter since each of gender and 
driver age only use one parameter.
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3.156.  A double lift chart compares the current rating plan to a proposed model.
Sort data by ratio of model prediction to current premium.
Subdivide sorted data into quantiles with equal exposure.
For each quantile calculate average actual loss cost, average model predicted loss cost and the
average loss cost underlying the current manual premium .
Index the quantile averages to the overall averages.
Plot the results.
Comment: The “winning” model is the one that more closely matches the actual pure premiums.

3.157.  The difference in degrees of freedom is: 18,175 - 18,169 = 6; we add 6 parameters.

Test statistic is: F = DS - DB
(number of added parameters) φ̂B

 = 8,905.6226 - 8,901.4414
 (6) (0.4523)

 = 1.541.

The number of degrees of freedom in the numerator is 6.
The number of degrees of freedom in the denominator is: 
number of degrees of freedom for the bigger model = 18,169. 
We compare the test statistic to the appropriate F-distribution.
The null hypothesis is to use the simpler model.
We reject the null hypothesis if the test statistic is sufficiently big. 
Comment: Using a computer, the p-value is 16.0%.  Thus at for example a 10% significance 
level, we do not reject the null hypothesis to use the simpler model.

3.158.  mean = exp[5.07 + 0.48 - 0.36] = 179.5. 
Variance = mean2 / α = 179.52 / 2.2 = 14,646.
Comment: Similar to CAS S, 5/16, Q.32.

3.159.  The Gini index can be used to measure the lift of an insurance rating plan by quantifying 
its ability to segment the population into the best and worst risks. 
The larger the Gini index, the better job the rating plan does of segmenting.  
Thus the rating plan used in Model 1 has more lift than the rating plan used in Model 2.

3.160.  One works with loss ratios with respect to the premiums for the current plan.  
To create a loss ratio chart:
1. Sort the dataset based on the model prediction, in other words modeled loss ratios.
2. Group the data into quantiles with equal volumes of exposures.
3. Within each group, calculate the actual loss ratio (under the current plan). 
Comment: If the proposed model is able to segment the data into lower and higher loss ratio 
buckets, then the proposed model is better than the current model.
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3.161.  Driver age and number of years claims-free are positively correlated. Older drivers are 
likely to be claims-free for more years than younger drivers. Thus in order to avoid double 
counting effects, the GLM lessens the effect of each variable somewhat compared to a model 
that just used one of the two variables.
Comment: A graph of number of years claims-free versus driver age:

Graph taken from “GLM II: Basic Modeling Strategy,” by Claudine Modlin,  
CAS Predictive Modeling Seminar, October 2008.
If two variables are very highly correlated, which is not the case here, then the GLM will have 
trouble converging and the parameter estimates may be unreliable.

3.162.  If the current rating plan were perfect, then all risks should have the same loss ratio. 
The fact that the proposed model is able to segment the data into lower and higher loss ratio 
buckets is a strong indicator that it is outperforming the current rating plan.
Comment: Graph taken from “Goodness of Fit vs. Goodness of Lift,” by Glenn Meyers 
and David Cummings, August 2009 Actuarial Review.
If one insurer were to use the current rating plan, while another insurer were to use the 
proposed rating plan, the second insurer should be able to attract better risks from the first 
insurer. The first insurer who continued to use the current plan would be subject to adverse 
selection. 
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3.163.  The offset is: ln(0.8) = -0.223. 
The linear component is: 6 + (0.1)(13) + (-0.2)(3) = 6.7.
Modeled pure premium = exp[6.7 - 0.223] = 650.
Alternately, the modeled pure premium is: (0.8) exp[6 + (0.1)(13) + (-0.2)(3)] = 650.

3.164.  Laurel is proposing the saturated model; it is overfit.
Hardy is proposing the null model; it is underfit.
A model with a number of parameters between the two would make sense.

3.165.  The average relativity is: (1.50)(9%) + (1.35)(4%) + (1.18)(5%) + (1)(82%) = 1.0680.
Thus compared to average, 3 or more years claims-free has a relativity of:
1.00/1.0680 = 0.9363.
Thus three years of data has a credibility of: 1 - 0.9363 = 6.4%.
Comment: Bailey and Simon look at the credibility of cars rather than drivers.
Also, Bailey and Simon were dealing with a very simple classification system.
The credibility depends on how refined the class system is; the more refined the classification 
system, the less credibility is given to individual experience.
In order to estimate a credibility for one year of data, one would have to group drivers into those 
that had at least one year claims free.

3.166.  These two variables are likely significantly positively correlated. 
(Those policies with three or more operators, usually list parents and one or more children as 
drivers. The listed child will be a teenager or young adult living at home. Very few teenagers 
have their own car on their own separate policy.) 
Including two such variables in a model, can produce anomalous results.
In any case, due to the interaction of these two variables, it will be difficult to interpret the 
relativities for the different levels of each variable.

3.167.  Both AIC and BIC are penalized measures of fit; in each case a penalty is added to twice 
the negative loglikelihood. In the case of AIC the penalty is twice the number of parameters in 
the model, while in the case of BIC the penalty is p log(n), where p is the number of parameters, 
and n is the number of data points that the model is fit on
In both cases, a smaller statistic is better.
“In practical terms, the authors have found that AIC tends to produce more reasonable results. 
Relying too heavily on BIC may result in the exclusion of predictive variables from your model.”
In other words, they believe that the use of BIC will tend to produce models that are underfit. 
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3.168. (a) Working Residual is: wri = (yi - μi) g’(μi).
(b) Most insurance models have thousands or even millions of observations, making plots of 
residuals much less useful. Therefore, for such models, it is critical to bin the residuals before 
analyzing them. (Binning the residuals aggregates away the volume and skewness of individual 
residuals, and allows us to focus on the signal.) The advantage of working residuals is that they 
can be aggregated in a way that preserves the common properties of residuals – that is, they
are unbiased (i.e., have no predictable pattern in the mean) and homoscedastic 
(i.e.,have no pattern in the variance) for a well-fit model.

(c) working weights: wwi = ωi
V(µi) g'(µi)2

.  

g is the link function.  V is the variance function for the distribution used. 
ωi is the weight given in the model to the ith observation.
(d) For each bin, the binned working residual is calculated by taking the weighted average of the 
working residuals of the individual observations within the bin, weighted by the working weights.
It is these binned working residual that will be plotted.
(e) 1. Plotting Residuals over the Linear Predictor
2. Plotting Residuals over the Value of a Predictor Variable
3. Plotting Residuals over the Weight
Comment: See Section 6.3.2 of Generalized Linear Models for Insurance Rating.

3.169.  The “winning” model is the one that more closely matches the actual pure premiums.
The proposed model does a much better job than the current rating plan; thus the proposed 
model is preferred.

3.170.  1. Model A does a better job of matching the actual than does Model B. Thus based on 
the criterion of predictive accuracy I prefer Model A.
Both models satisfy the criterion of monotonicity; the actuals increase with quintile.
Model A has a larger vertical distance between the actuals for the first and last quintiles than 
does Model B. Thus based on this criterion I prefer Model A.
Thus overall I prefer Model A to Model B.
Comment: In order to determine the “winning” model, consider the following 3 criteria:
1. Predictive accuracy. How well each model is able to predict the actual pure
premium in each quantile.
2. Monotonicity. By definition, the predicted pure premium will monotonically increase as the 
quantile increases, but the actual pure premium should also increase (though small reversals 
are okay).
3. Vertical distance between the first and last quantiles. The first quantile contains the risks that 
the model believes will have the best experience, and the last quantile contains the risks that the 
model believes will have the worst experience. A large difference (also called “lift”) between the 
actual pure premium in the quantiles with the smallest and largest predicted loss costs indicates 
that the model is able to maximally distinguish the best and worst risks.

3.171.  I prefer the Inverse Gaussian model, since the standardized deviance residuals are 
much closer to being Normally Distributed.
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3.172.  Xβ = 1 + (8)(0.31) = 3.48.
The odds are: e3.48 = 32.5.
Alternately, for the logistic model: π̂  = e3.48 / (1 + e3.48) = 0.9701.
The odds are: π̂ / (1 - π̂ ) = 0.9701 / (1 - 0.9701) = 32.4.
Comment: Similar to MAS-1, 5/18, Q.27.
We have estimated that the probability of renewal is 32.5 times the probability of a nonrenewal.
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3.173. 
30% Threshold30% Threshold 60% Threshold60% Threshold

Claim # Fraud Predict. Predict.

1 N Y False Pos. N True Neg.

2 N Y False Pos. N True Neg.

3 N N True Neg. N True Neg.

4 N N True Neg. N True Neg.

5 Y Y True Pos. Y True Pos.

6 N N True Neg. N True Neg.

7 Y N False Neg. N False Neg.

8 N Y False Pos. Y False Pos.

9 Y Y True Pos. Y True Pos.

10 Y Y True Pos. Y True Pos.

11 N Y False Pos. N True Neg.

12 Y Y True Pos. N False Neg.

13 N Y False Pos. N True Neg.

14 N Y False Pos. Y False Pos.

15 N Y False Pos. N True Neg.
(a)  

30% Threshold30% Threshold30% Threshold
PredictedPredicted

Actual Fraud No Fraud Total
Fraud true pos.:  4 false neg.: 1 5

No Fraud false pos.: 7 true neg.:  3 10
Total 11 4 15

60% Threshold60% Threshold60% Threshold
PredictedPredicted

Actual Fraud No Fraud Total
Fraud true pos.:  3 false neg.: 2 5

No Fraud false pos.: 2 true neg.:  8 10
Total 5 10 15
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(b) Sensitivity = True Positives
Total Number of Events

 = Correct Predictions of Fraud
Total Number of Fraudulent Claims

.  

Specificity = True Negatives
Total Number of Non-Events

 = Correct Predictons of No Fraud
Total Number of Nonfraudulent Claims

.

30% threshold: sensitivity = 4/5, and specificity = 3/10.! ! Graph (1 - 3/10, 4/5).
60% threshold: sensitivity = 3/5, and specificity = 8/10 = 4/5.! ! Graph (1 - 4/5, 3/5).
The ROC Curve, plus the 45-degree comparison line:

Comment: Similar to 8, 11/07, Q. 6a&b. 
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3.174.  Let ti be the territory relativity for a given insured.  Then the offset is ln(ti).
As per Section 2.6 of Generalized Linear Models for Insurance Rating:
g(µi) = β0 + β1xi1 + β2xi2 + ...+ βpxip + offset. 
Olaf would have a set of predictors of class relativity, and the model would be:
ln[class relativityi] = β0 + β1xi1 + ...+ βpxip + ln(ti).
class relativity = exp[β0 + β1xi1 + ...+ βpxip + ln(ti)] = exp[β0 + β1xi1 + ...+ βpxip] ti.
The GLM would be fit as usual, where each ti is a known constant.

Comment: class relativity
known territory relativity

 = exp[β0 + β1xi1 + ...+ βpxip].

Territories are not a good fit for the GLM framework. 
See Section 9.2 of Generalized Linear Models for Insurance Rating.
One should include the territory relativities produced by the separate model as an offset in the
GLM used to determine classification relativities. Similarly, one should include classification
relativities produced by the GLM as an offset in the separate model used to determine territory
relativities.

3.175.  A model with approximately 6 degrees of freedom has the right balance, since it has the 
smallest test MSE.
A model with approximately 2 degrees of freedom is too simple, it has a larger test MSE.
A model with approximately 20 degrees of freedom is too complex, it has a larger test MSE;
while the training MSE is smaller that is due to this model being overfit.
Comment: Similar to 8, 11/17, Q 4b.
See Figure 7 in Generalized Linear Models for Insurance Rating. 
We are interested in how the GLM will perform at predicting the response variable on some 
future set of data rather than on the set of past data with which we are currently working.
Our goal in modeling is to find the right balance where we pick up as much of the signal as 
possible with minimal noise, represented in this case by model with about 6 degrees of freedom. 
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3.176. (a) i. One can bin driver age into groups. 
ii. Adding polynomial terms, such as X2.
iii. One can use hinge functions. A hinge function is of the form: (X - c)+ = max(0, X - c).
This will result in a piecewise linear function, with a change in slope at each breakpoint ci. 
(b) i. With binning: Continuity is not guaranteed.
Variation within intervals is ignored.
There may not be enough data in each bin to be credible.
There could be non-intuitive results, such as reversals.
ii. It is hard to interpret models that include powers.
“One potential downside to using polynomials is the loss of interpretability. From the coefficients 
alone it is often very difficult to discern the shape of the curve; to understand the model’s 
indicated relationship of the predictor to the target variable it may be necessary to graph the 
polynomial function.”
iii. Using hinge functions: The breakpoints must be selected by the user.
Comment: Similar to 8, 11/18, Q.5.
In all cases, more parameters are added to the model; the principal of parsimony states that we 
prefer a simpler model with fewer parameters, all else being equal. 

3.177.  exp[2.182 + 1.137 - 0.422]
1 + exp[2.182 + 1.137 - 0.422]

 = 94.77%.

Comment: Similar to CAS S, 5/16, Q.33. 

3.178. (a) Adding driver age using 5 bins, adds 4 parameters.
i. Unscaled Deviance = 
! φ 2 {(loglikelihood for the saturated model) - (loglikelihood for the fitted model)}.
DA = (0.61) (2) {-100 - (-130)} = 36.6.  DB = (0.63) (2) {-100 - (-123)} = 28.98.

F = (DA - DB) / (number of added parameters) 
 φ̂B

 = {(36.6 - 28.98) / 4} / 0.63 = 3.024.

We compare to the given critical value of 2.600.
Since 3.024 > 2.600, model B is significantly better than model A.
Driver age should be included in the rating plan.
ii.  AICA = (-2)(-130) + (2)(5) = 270.
AICB = (-2)(-123) + (2)(5+4) = 264.
Since AICB < AICA, model B is better than model A.
Driver age should be included in the rating plan.
iii. BICA = (-2)(-130) + (5) ln(50) = 279.56.
BICB = (-2)(-123) + (5+4) ln(50) = 281.21.
BICA < BICB, and model A is better than model B.
Driver age should not be included in the rating plan.
Comment: Similar to 8, 11/18, Q. 6a.
The degrees of freedom for Model B = 
number of observations minus number of fitted parameters for model B = 50 - 5 - 4 = 41.
The F-statistic has degrees of freedom 4 and 41.
The given critical value is the 5% critical value for 4 and 41 degrees of freedom.
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3.179.  Xβ = 1 + (2)(0.50) + (-5)(0.29) = 0.55.
The Gamma has the inverse as its canonical link function.
1/ (Xβ) = 1/0.55 = 1.818.
The Poisson has the log as its canonical link function.
exp[Xβ] = e0.55 = 1.733.
The Normal has the identity as its canonical link function.
Xβ = 0.55.
0.55 < 1.733 < 1.818.  Thus the correct ordering is: III < II < I.
Comment: Similar to MAS-1, 5/18, Q.25.
The Binomial has the logit as its canonical link function.

3.180. (a) As per Section 2.6 of Generalized Linear Models for Insurance Rating:

g(µi) = β0 + β1xi1 + β2xi2 + ...+ βpxip + offset. 

Thus the offset for Policy 1 is: ln( 0.023
1 - 0.023

) = -3.749.

The offset for Policy 2 is: ln( 0.112
1 - 0.112

) = -2.070.

The offset for Policy 3 is: ln( 0.045
1 - 0.045

) = -3.055.

(b) In each case we add the offset to the linear component from the insurance score.
For Policy 1: 1.581 + (-0.032)(34) - 3.749 = -3.256.

Probability of a claim is: exp[-3.256]
1 + exp[-3.256]

 = 3.71%.

For Policy 2: 1.581 + (-0.032)(66) - 2.070 = -2.601.

Probability of a claim is: exp[-2.601]
1 + exp[-2.601]

 = 6.91%.

For Policy 3: 1.581 + (-0.032)(88) - 3.055 = -4.290.

Probability of a claim is: exp[-4.290]
1 + exp[-4.290]

 = 1.35%.

Comment: Similar to 8, 11/18, Q. 7a and 7b.

3.181.  Variable X3 has a nonlinear relationship with the target variable that is not being 
adequately addressed. This issue may be fixed with a hinge function.
Comment: See Figure 19 in Generalized Linear Models for Insurance Rating.
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3.182.  The Lorenz curve for men:

!

Line of Equality

(99, 84 )

(95, 59)

(90, 42 )

(50, 4 )

20 40 60 80 100
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80

100

Percent of Likes

The Lorenz curve for women:

!

Line of Equality

(99, 89 )

(95, 69)

(90, 54)

(50, 8 )

20 40 60 80 100
Percent of Population

20

40

60

80

100

Percent of Likes

The Gini index, twice the area between the Lorenz curve and the line of equality, is higher for 
men than women, indicating more inequality among men on this dating app.
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3.183. (a) exp[-8.2 + 0.3 + 0.7 + 0.4 ln[150,000] - 0.1 ln[150,000]]
exp[-8.2 + 0.3 + 0.4 ln[150,000]]

! = exp[0.7 - 0.1 ln[150,000]] = 0.6115.
(b) In order to center AOI, we will divide the AOI by the base AOI of 300,000 prior to logging and 
including it in the model. The two forms of the model produce the same results.
For example, for Occupancy class 1, non-sprinklered property, with AOI = 300,000, the given 
model has: exp[-8.2 + 0.4 ln[300,000] ].
With intercept β0, the revised model would have for this same risk: 
exp[β0 + 0.4 ln[300,000/300,000] ] = exp[β0].
⇒ exp[-8.2 + 0.4 ln[300,000] ] = exp[β0].

⇒ β0 = -8.2 + 0.4 ln[300,000] = -3.155.

(c) For example, for Occupancy class 1, sprinklered property, with AOI = 300,000, the given 
model has: exp[-8.2 + 0.4 ln[300,000] + 0.7 - 0.1 ln[300,000] ].
With an intercept of -3.155 and coefficient for sprinklered of βS, the revised model would have 
for this same risk: 
exp[-3.155 + 0.4 ln[300,000/300,000] + βS - 0.1 ln[300,000/300,000]] = exp[-3.155 + βS].
⇒ -8.2 + 0.4 ln[300,000] + 0.7 - 0.1 ln[300,000] = -3.155 + βS.

⇒ βS = -0.562.

Alternately, given that β0 = -8.2 + 0.4 ln[300,000], we want:
0.7 - 0.1 ln[300,000] = βS. ⇒ βS = -0.561.

(d) 1. If all continuous variables are divided by their base values prior to being logged and 
included in the model, then the intercept term after exponentiating yields the indicated frequency 
at the base case when all variables are at their base levels. This is both more intuitive and 
easier to interpret.
2. When terms are not centered, you can have unintuitive results. In the given example, the 
sprinkler coefficient is positive which can appear to indicate a higher frequency for sprinklered
buildings than for non-sprinklered buildings. (However, when taking into account the interaction 
term, this is not true for values of log(AOI) for insured buildings.) This would not happen if AOI 
had been centered at its base level; the coefficients are more intuitive to understand when 
variables are centered.
3. With the AOI predictor in this form, the sprinklered coefficient has a more natural 
interpretation: it is the (log) sprinklered relativity for a risk with the base AOI.
Comment: Similar to 8, 11/19, Q.6. 
The calculated ratio in part (a) does not depend on the occupancy class.

3.184.  Model documentation serves at least three purposes:
● To serve as a check on your own work, and to improve your communication skills
● To facilitate the transfer of knowledge to the next owner of the model
● To comply with the demands of internal and external stakeholders
Comment: Quoted from Section 8.1 of Generalized Linear Models for Insurance Rating.
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3.185.  If one treats a “positive” result as predicting spam, then 

sensitivity = True Positives
Number times there is an event

 = Number of Correct Indentifications of Spam
Number times there is Spam

= 36.3%
36.3% + 3.0%

 = 92.4%.  

specificity = True Negatives
Number times there is not an event

 = 

Number of Correct Indentifications of Legitimate Email
Number times there is Legitimate Email

 = 58.2%
58.2% + 2.5%

 = 95.9%.

If instead one treats a “positive” result as predicting a legitimate email, then 

sensitivity = True Positives
Number times there is an event

 =

Number of Correct Indentifications of Legitimate Email
Number times there is Legitimate Email

 = 58.2%
58.2% + 2.5%

 = 95.9%. 

specificity = True Negatives
Number times there is not an event

 = Number of Correct Indentifications of Spam
Number times there is Spam

= 36.3%
36.3% + 3.0%

 = 92.4%.   

3.186.  Compute the relative loss costs.  For example, 118.88/123.88 = 0.9596.

Decile
Actual
Pure 

Premium
Actual

Relativity
Model 1

Pure 
Premium

Model 1
Relativity

Model 2
Pure 

Premium
Model 2
Relativity

1 $118.88 0.9596 $109.62 0.9088 $115.08 0.9541

2 $141.58 1.1428 $121.73 1.0091 $125.95 1.0442

3 $129.37 1.0442 $115.13 0.9545 $117.95 0.9779

4 $107.00 0.8637 $117.76 0.9762 $119.68 0.9923

5 $117.91 0.9517 $115.58 0.9582 $116.57 0.9664

6 $113.02 0.9123 $118.84 0.9852 $119.08 0.9873

7 $130.21 1.0511 $121.57 1.0078 $121.11 1.0041

8 $123.52 0.9970 $126.99 1.0527 $125.70 1.0421

9 $121.75 0.9828 $124.94 1.0358 $121.36 1.0062

10 $135.65 1.0950 $134.13 1.1120 $123.65 1.0252

Total $123.88 $120.62 $120.61
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Now plot these relative loss costs by decile:
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Comment: The data was taken from “GLM III” presentation by Brent Petzoldt, 
CAS Ratemaking, Product and Modeling Seminar 2019.
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3.187.  The larger the average severity, the more worthwhile it is for the insurer to spend money 
to investigate cases of possible fraud. If claims are more severe, then the insurer will be more 
concerned about false negatives (cases where there is fraud but the modeled probability of 
fraud is below the threshold), than it would be about false positives (cases where there is not 
fraud but the modeled probability of fraud is above the threshold). Therefore, the more severe 
the claims, the lower the discrimination threshold that should be selected.
Comment: Similar to 8, 11/19, Q. 5d.
See page 84 of Generalized Linear Models for Insurance Rating.
“The ROC curve allows us to select a threshold we are comfortable with after weighing the 
benefits of true positives against the cost of false positives. Different thresholds may be chosen 
for different claim conditions; for example, we may choose a lower threshold for a large claim 
where the cost of undetected fraud is higher. Determination of the optimal threshold is typically a 
business decision that is out of the scope of the modeling phase.”

3.188.  The residuals tend be larger for smaller and larger values of the linear predictor; there is 
a curvature. This may be caused by a non-linear effect that may have been missed.
Comment: See Figure 18 in Generalized Linear Models for Insurance Rating. 

3.189. 
• The first and second derivatives of the fitted curve function are continuous—which in a 
! practical sense means that the curve will appear fully “smooth” with no visible breaks in
! the pattern.
• The fits at the edges of the data (i.e., before the first selected breakpoint and after the last) are 
! restricted to be linear, which curtails the potential for the kind of erratic edge behavior 
! exhibited by regular polynomial functions.
• The use of breakpoints makes it more suitable than regular polynomial functions for modeling 
! more complex effect responses, such as those with multiple rises and falls.
Comment: Quoted from Section 5.4.5 of Generalized Linear Models for Insurance Rating.
Also, the spline is continuous at each of the breakpoints.
Between the breakpoints (knots), a cubic spline follows a cubic polynomial.
The linearity at the edges is what distinguishes a natural cubic spline from a cubic spline. 

3.190.  Sort the risks from best to worst based on the model predicted pure premium.

Risk Model P.P. (000) Exposures Cumulative
Exposures

Cumulative
% of Exposures

2 30 19 19 9.5%

4 38 24 43 21.5%

5 43 27 70 35.0%

3 49 21 91 45.5%

8 52 34 125 62.5%

1 56 15 140 70.0%

7 64 31 171 85.5%

6 77 29 200 100.0%
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Risk Exposures Actual P.P.
(000)

Actual
Losses (000)

Cumulative
Losses (000)

Cumulative
% of Losses

2 19 36 684 684 6.8%

4 24 49 1,176 1,860 18.6%

5 27 28 756 2,616 26.2%

3 21 42 882 3,498 35.0%

8 34 39 1,326 4,824 48.2%

1 15 60 900 5,724 57.2%

7 31 79 2,449 8,173 81.7%

6 29 63 1,827 10,000 100.0%
On the x-axis, plot the cumulative percentage of exposures.
On the y-axis, plot the cumulative percentage of actual losses.
The plotted points are: (0, 0), (9.5%, 6.8%), (21.5%, 18.6%), ... , (85.5%, 81.7%), (100%, 100%).

Comment: Similar to 8, 11/16, 5a.
The Gini index is twice the area between the Lorenz Curve and the line of equality.
The higher the Gini Index, the better the rating plan is at identifying risk differences.
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3.191.  Both models are monotone increasing, which is good.
Model 1 has a larger vertical distance between the first and last deciles than does Model 2;
Model 1 has more “lift” than Model 2. All else being equal, larger lift is better, indicating that the
model is able to maximally distinguish the best and worst risks.
Based on the first graph, Model 1 does a better job of matching the training data.
However, based on the second graph, Model 1 does a worse job of matching the test data, 
particularly for the high deciles. Model 1 is overfit; the model picks up too much of the random 
fluctuation (noise) in the training data.
Based on the first graph, Model 2 does a worse job than Model 1 of matching the training data.
However, based on the second graph, Model 2 does a good job of matching the test data. 
Model 2 seems to do a good job of modeling this situation.
I would recommend using Model 2 rather than Model 1.
Comment: Similar to 5, 5/19, Q.9.
In general, we do not want a model to be either underfit (not picking up enough of the signal) nor 
overfit (picking up too much of the noise).

3.192.  working residual: wri = (yi - μi) g’(μi).
For the log link function: g(µ) = ln(µ). ⇒ g’(µ) = 1/µ. ⇒ wri = (yi - µi)/µi.

working weights: wwi = ω i
V(µi) g'(µi)2

.

For the Poisson: V(µ) = µ. ⇒ wwi = ωi μi.

wri wwi = ωi (yi - µi).
Thus the numerator of the weighted average is the sum of the product of the working residuals 
and working weights: (11)(4 - 3.3) + (9)(3 - 3.7) + (15)(6 - 5.5) + (7)(2 - 4.1) + (12)(5 - 5.2) 
! ! ! ! + (8)(4 - 3.4) + (14)(2 - 2.6) + (10)(4 - 3.0) = -1.8.
The denominator of the weighted average is the sum of the working weights: 
(11)(3.3) + (9)(3.7) + (15)(5.5) + (7)(4.1) + (12)(5.2) + (8)(3.4) + (14)(2.6) + (10)(3.0) = 336.8.
The binned working residual is: -1.8/336.8 = -0.00534.
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3.193.  The order of predicted pure premiums is: 5, 4, 2, 1, 3.

Insured Actual
Loss Cost

Actual
Pure Premium

Model
Loss Cost

Model
Pure Premium Exposures

1 $38,000 $380 $36,000 $360 100

2 $36,000 $300 $42,000 $350 120

3 $52,000 $400 $57,000 $438 130

4 $46,000 $307 $49,000 $327 150

5 $58,000 $322 $51,000 $283 180
The corresponding predicted pure premiums are: 283, 327, 350, 360, 438.
The corresponding actual pure premiums are: 322, 307, 300, 380, 400.
The Simple Quantile Plot, with the actual pure premiums shown as A and the predicted pure 
premiums shown as dots:

Comment: One would construct a similar Simple Quantile Plot for a proposed model, in order to 
compare that proposed model to the current model. 
One would work with many more than 5 observations; I would not draw any conclusions based 
on such a small amount of data.
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3.194.  “One potential downside to using polynomials is the loss of interpretability. From the 
coefficients alone it is often very difficult to discern the shape of the curve; to understand the 
model’s indicated relationship of the predictor to the target variable it may be necessary to graph 
the polynomial function.
Another drawback is that polynomial functions have a tendency to behave erratically at the 
edges of the data, particularly for higher-order polynomials.”
Comment: Quoted from Section 5.4.3 of Generalized Linear Models for Insurance Rating.

3.195.  Working Residual is: wri = (yi - μi) g’(μi).
(a) g(µ) = µ. ⇒ g’(µ) = 1. ⇒ wri = yi - µi = ordinary residual.

0.4 - 0.5 = -0.1.
(b) g(µ) = ln(µ). ⇒ g’(µ) = 1/µ. ⇒ wri = (yi - µ i)/µ i.

(0.4 - 0.5)/0.5 = -0.2

(c) g(µ) = ln( µ
1 - µ

). ⇒ g’(µ) = 1
µ

1 - µ
⎛
⎝⎜

⎞
⎠⎟

 (1 - µ) - (µ)(-1)
(1 - µ)2

 = 1
µ (1 - µ)

. ⇒ wri =  
yi - µi

µi (1 - µi) .

(0.4 - 0.5) / {(0.5)(1 - 0.5)} = -0.4.

3.196.  The offsets for deductibles are: ln(1) = 0, ln(1 - 0.06) = -0.0618, ln(1 - 0.11) = -0.1165. 
The offsets for territories are: ln(400) = 5.991, ln(600) = 6.397, ln(900) = 6.802.
Thus the offsets for the nine combinations are:

Territory 500 Ded. 1000 Ded. 2500 Ded.

A 5.991 5.930 5.875

B 6.397 6.335

C 6.802 6.741 6.686
For example, for a 1000 deductible in Territory B, offset = ln(1 - 0.06) + ln(600) = 6.335.
Alternately, one can instead work with the territory relativities:
1, 600/200 = 1.5, 900/400 = 2.25.
The offsets for territories are: ln(1) = 0, ln(1.5) = 0.4055, ln(2.25) = 0.8109.
Thus the offsets for the nine combinations are:

Territory 500 Ded. 1000 Ded. 2500 Ded.

A 0.000 -0.062 -0.117

B 0.405 0.344 0.289

C 0.811 0.749 0.694
For example, for a 1000 deductible in Territory B, offset = ln(1 - 0.06) + ln(1.5) = 0.344.
Comment: Using the territory relativities, all of the offsets are lower by ln(400).
Therefore, the fitted intercept will be larger by ln(400). The predictions of the fitted models would 
be the same regardless of which way Hari chooses to treat the offsets for territory.
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3.197.  There are several ways the p parameter may be determined:
• Some model-fitting software packages provide the functionality to estimate p as part of the 
model-fitting process. (Note that using this option may increase the computation time 
considerably, particularly for larger datasets.)
• Several candidate values of p can be considered and tested with the goal of optimizing a 
statistical measure such as log-likelihood or using cross-validation.
• Alternatively, many modelers simply judgmentally select some value that makes sense 
(common choices being 1.6, 1.67 or 1.7). This may be the most practical in many scenarios, as 
the fine-tuning of p is unlikely to have a very material effect on the model estimates.
Comment: Quoted from Section 2.7.3 from Generalized Linear Models in Insurance Rating.

3.198. (a) sensitivity = (true positives) / (all positives) = 172 / (172 + 90) = 65.6%.
specificity = (true negatives) / (all negatives) = 302 / (302 + 88) = 77.4%.
(b) The 40% threshold corresponds to the point: (1 - 0.774, 0.656).  The ROC curve:

For a threshold of 100% the model always predicts no; there are no false negatives and thus 
1 - specificity is zero. For a threshold of 100% the model never predicts yes; there are no true 
positives and thus the sensitivity is zero.
For a threshold of 0% the model never predicts no; there are no false negatives and thus 
1 - specificity is one. For a threshold of 0% the model always predicts yes; the true positives are 
equal to all positives and thus the sensitivity is one. 
(c) A model with with no predictive power would follow the comparison line (line of equality).
A perfect model would be at (0, 1) in the upper lefthand corner; sensitivity = 1 and specificity = 1.
Comment: Similar to 8, 11/19, Q. 5 b-c.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 545
 



3.199.  working weights: wwi = ω i
V(µi) g'(µi)2

.

(a) For the log link function: g(µ) = ln(µ). ⇒ g’(µ) = 1/µ.

For the Poisson: V(µ) = µ.
⇒ wwi = ωi μi = (60)(0.7) = 42.

(b) For the Gamma: V(µ) = µ2. ⇒ wwi = ωi = 60.

(c) For the Tweedie: V(µ) = µp. ⇒ wwi = ωi µi2-p = (60)(0.72-1.6) = 52.0.

(d) For the identity link, g(µ) = µ. ⇒ g’(µ) = 1. 

For the Normal, V(µ) = 1. ⇒ wwi = ωi = 60.

(e) g(µ) = ln( µ
1 - µ

). ⇒ g’(µ) = 1
µ

1 - µ
⎛
⎝⎜

⎞
⎠⎟

 (1 - µ) - (µ)(-1)
(1 - µ)2

 = 1
µ (1 - µ)

. 

For the Bernoulli, V(µ) = µ(1 - µ). ⇒ wwi = ωi µi(1 - µi) = (60)(0.7)(1 - 0.7) = 12.6.

(f) For the reciprocal link, g(µ) = 1/µ. ⇒ g’(µ) = -1/µ 2.

For the Inverse Gaussian: V(µ) = µ3. ⇒ wwi = ωi μi = (60)(0.7) = 42. 
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3.200.  Sort the data based on the ratio: 
(Model A Predicted Loss Cost) / (Model B Predicted Loss Cost).

Obs
Actual
Loss 
Cost

Actual
Pure 

Premium

Model A
Loss 
Cost

Model A
Pure 

Premium

Model B
Loss 
Cost

Model B
Pure 

Premium
Exposures Sort

Ratio

1 $15,000 $300 $16,000 $320 $18,000 $360 50 0.89

2 $20,000 $286 $25,000 $357 $22,000 $314 70 1.14

3 $42,000 $525 $31,000 $388 $37,000 $463 80 0.84

4 $44,000 $440 $48,000 $480 $39,000 $390 100 1.23

5 $39,000 $279 $38,000 $271 $41,000 $293 140 0.93

Tot. $160,000 $364 $158,000 $359 $157,000 $357 440
The sort ratios from smallest to largest give the order: 3, 1, 5, 2, 4.
In each case, we divide the individual pure premiums by the total pure premium.
The Actual P.P. relativities are: (525, 300, 279, 286, 440) / 364 = 1.44, 0.82, 0.77, 0.79, 1.21. 
Model A P.P. relativities are: (388, 320, 271, 357, 480) / 359 = 1.08, 0.89, 0.75, 0.99, 1.34.
Model B P.P. relativities are: (463, 360, 293, 314, 390) / 357 = 1.30, 1.01, 0.82, 0.88, 1.09.
The double lift chart, with actual shown as dots, Model A shown as A, and Model B shown as B:

Comment: One would work with many more than 5 observations; I would not draw any 
conclusions based on such a small amount of data.
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3.201.  (a) External: insurance regulators, outside auditors, and risk managers. 
Internal: executives, underwriters, claims adjusters, other actuaries, and IT personnel. 
(b) Your documentation should have:
● Include everything needed to reproduce the model from source data to model output
● Include all assumptions and justification for all decisions
● Disclose all data issues encountered and their resolution
● Discuss any reliance on external models or external stakeholders
● Discuss model performance, structure, and shortcomings
● Comply with ASOP 41 or local actuarial standards on communications
Comment: See Section 8.3 of Generalized Linear Models for Insurance Rating. 

3.202.  200 people have the antibodies, while 800 people do not.
90% specificity ⇔ 10% false positives.
Thus of the 800 people who do not have the antibodies, on average (10%)(800) = 80 will be 
tested as falsely positive. The remaining 720 people will be correctly tested as negative. 
95% specificity ⇔ 5% false negatives.
Thus of the 200 people who have the antibodies, on average (5%)(200) = 10 people will be 
tested as falsely negative. The remaining 190 people will be correctly tested as positive.
The confusion matrix:

Result of TestResult of Test

Antibodies No Antibodies Total

Antibodies 190 10 200

No Antibodies 80 720 800

Total 270 730 1000

3.203.  The variance of residuals seems to decrease as the weight increases.
This violates the expectation of homoscedasticity, i.e., we want no pattern in the variance. 
This indicates that the weights being used in the model are not properly adjusting for differences 
in variance as is desired. Perhaps some other form of weights would work better,
Comment: See Figure 20 in Generalized Linear Models for Insurance Rating.

3.204.  Assume for example 1000 people.  20 people are expected to have this type of cancer.

95% = sensitivity = True Positive
Number with Cancer

.  

Thus 19 of 20 with this cancer are expected to test positive.

90% = specificity = True Negative
Number without Cancer

.  

Thus 882 of 980 without this cancer are expected to test negative, and 98 to test positive.
(a) If a person of this age tests positive for this type of cancer, then the probability that they have 
this type of cancer is: 19 / (19 + 98) = 16.24%.
(b) If a person of this age tests negative for this type of cancer, then the probability that they do 
not have this type of cancer is: 882 / (1 + 882) = 99.887%. 
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3.205.  Here is the Lorenz curve, with various areas labeled:

!

A
C

B D

0.2 0.4 0.6 0.8 1.0
Population

0.2

0.4

0.6

0.8

1.0

Income

Area B is a right triangle with width 0.6 and height 0.3; area = (1/2)(0.6)(0.3) = 0.09.
Area C is a right triangle with width 0.4 and height 0.7; area = (1/2)(0.4)(0.7) = 0.14.
Area D is a rectangle with width 0.4 and height 0.3; area = (0.4)(0.3) = 0.12.
A + B + C + D is a right triangle with width 1 and height 1; area = (1/2)(1)(1) = 0.50.
Thus Area A = 0.50 - 0.09 - 0.14 - 0.12 = 0.15.
Area A is the area between the Lorenz curve and the line of equality.
The Gini Index is twice this area: (2)(0.15) = 0.30.

! !
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3.206.  One-way or univariate analysis does not accurately take into account the effect of other 
rating variables. It does not consider exposure correlations with other rating variables.

3.207.  a. Linear Model:
● Random Component: Each component of Y is independent and normally distributed.
! Their means may differ, but they have common variance.
● Systematic Component: The covariates are combined to produce the linear predictor η = Xβ.
● Link Function: The relationship between the random component and the systematic 
! component is specified with the identity link function: E(Y) = µ = η.  
! (if g is the identity link function, g-1(η) = η.)
Generalized Linear Model:
● Random Component: Each component of Y is independent and a member of an exponential
! family. (While the Normal is one possibility, there are others.)
● Systematic Component: The covariates are combined to produce the linear predictor η = Xβ.
● Link Function: The relationship between the random component and the systematic 
! component is specified with the link function, which is differentiable and monotonic such 
! that:  E(Y) = µ = g-1(η).  
! (While the identity link function is one possibility, there are others.)
b) 1) The assumption of normality with common variance is often not true.
2) Sometimes the response variable may be restricted to be positive, but normality with the 
! identity link function violates this.

3.208.  i. Classical Linear Model: Response variable is normally distributed.
Generalized Linear Model: Response variable is from the exponential family.
ii) Classical Linear Model: The variance is constant but the mean is allowed to vary.
Generalized Linear Model: The variance is a function of the mean (exponential family).
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3.209.  a. Intrinsic aliasing is a linear dependency between covariates due to the definition. 
For example, if we have only black, red and blue cars, the red cars can be determined from 
[total cars] - black - blue. As another example, age of vehicle would alias with model year, since 
if you know one you can determine the other.
Extrinsic aliasing is a linear dependency between covariates that arises due to the nature of the 
data
rather than inherent properties of the covariates themselves. For example, if in the data all cars 
with unknown color also have an unknown number of doors, and vice-versa.
b. We have that [all cars] - large cars - medium cars = small cars, so we can say that 
Xsmall = 1 - Xlarge - Xmedium. 
If we do not have a base level, then we could have two size variables such as Large and 
Medium, plus all four territories.
We have that [all cars] - North - South - West = East, so we can say that 
XEast = 1 - XNorth - XSouth - XWest.
If we do not have a base level, then we could have three territory variables such as North, 
South, and West, plus all three sizes.
Alternately, we can eliminate βsmall and βEast from the model and include an intercept term; 
Small / East would be the base level. Intercept plus 2 size and 3 territory variables.
Comment: The current syllabus reading does not distinguish between intrinsic and extrinsic 
aliasing.
In part (b) we should end up with 6 variables in total.
If we have an intercept term, we would have in addition three territory levels and two size levels.
Aliasing occurs when there is a linear dependency among the observed covariates. Equivalently, 
aliasing can be defined as a linear dependency among the columns of the design matrix X. 
Near aliasing is a common problem and occurs when two or more factors contain levels that are 
almost, but not quite, perfectly correlated. This same problem comes up when performing 
multiple linear regressions.
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3.210.  There are many possible ways to set this up.
Taking North and Medium as the base levels as instructed.
Let X1 correspond to the intercept term. It is one for all cells.
Let X2 correspond to South.  X2 = 1 if South and 0 otherwise.
Let X3 correspond to East.  X3 = 1 if East and 0 otherwise.
Let X4 correspond to West.  X4 = 1 if West and 0 otherwise.
Let X5 correspond to Small.  X5 = 1 if Small and 0 otherwise.
Let X6 correspond to Large.  X6 = 1 if Large and 0 otherwise.
Then the design matrix, X, and response vector Y are:

X = 

1 0 0 0 1 0
1 0 0 0 0 0
1 0 0 0 0 1
1 1 0 0 1 0
1 1 0 0 0 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 0
1 0 0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  

North Small
North Medium
North Large
South Small

South Medium
South Large
East Small

East Medium
East Large
West Small

West Medium
West Large

  Y = 

100
150
250
80
110
290
90
170
200
180
260
540

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

The vector of parameters is:

!

β1
β2
β3
β4
β5
β6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Comment: While one could fit a Poisson to pure premiums, and treat the result as a discrete 
approximation, it is more common to fit a Tweedie Distribution.
Using a computer the fitted parameters are:
β1 = 4.95978, β2 = -0.040822, β3 = -0.0833816, β4 = 0.672944, β5 = -0.427444, β6 = 0.617924.
We have a multiplicative model with relativities:
South: exp[-0.040822] = 0.960, East: exp[-0.0833816] = 0.920, West: exp[0.672944] = 1.960, 
Small: exp[-0.427444] = 0.652, Large: exp[0.617924] = 1.855.
For example, the fitted value for South and Small is:
exp[β1 + β2 + β5] = exp[4.95978 - 0.040822 - 0.427444] = 89.26.
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The fitted values are:
Vehicle SizeVehicle SizeVehicle Size

Territory Small Medium Large Total

North 92.98 142.56 264.46 500

South 89.26 136.86 253.88 480

East 85.54 131.16 243.31 460.01

West 182.23 279.42 518.35 980

Total 450.01 690 1280 2420.01
Subject to rounding, the totals for the fitted match those for the data.
In general, the estimates will be in balance as they were here, when one uses the canonical link 
function; the canonical link function for the Poisson is the log link function.
See “A Systematic Relationship Between Minimum Bias and Generalized Linear Models,” 
by Stephen Mildenhall, PCAS 1999. 
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3.211.  a)  Y = β1X1 + β2X2 + β3X3 + e.
Y1 = 400 = β1 + 0 + β3 + e1.
Y2 = 250 = β1 + 0 + 0 + e2.
Y3 = 200 = 0 + β2 + β3 + e3.
Y4 = 100 = 0 + β2 + 0 + e4.
Sum of Squared Errors = e12 + e22 + e32 + e42

= (400 - β1 - β3)2 + (250 - β1)2 + (200 - β2 - β3)2 + (100 - β2)2.
Set equal to zero the partial derivatives with respect to betas:
2(400 - β1 - β3)(-1) + 2(250 - β1)(-1) = 0. ⇒ 2β1 + β3 = 650.
2(200 - β2 - β3)(-1) + 2(100 - β2)(-1) = 0. ⇒ 2β2 + β3 = 300.
2(400 - β1 - β3)(-1) + 2(200 - β2 - β3)(-1) = 0. ⇒ β1 + β2 + 2β3 = 600.
Solve for the betas.
b) i. constant variance. However, the variance is often a function of the mean.
ii. The components of the response variable are normally distributed. 
For example, the response variable may be restricted to non-negative values, violating 
normality.
iii. Additivity of effects. Many factors in reality have multiplicative effects.
Comment: GLMs relax all of the three assumptions in part (b).
In the additive model in the question, we are taking Rural as the base; we have three categorical 
variables that each can take on the values zero or one, although when X1 = 1 we must have 
X2 = 0 and vice-versa.
The solution to the three equations is: β1 = 525/2, β2 = 175/2, and β3 = 125. 
The resulting estimates are:

Gender Urban Rural

Male 525/2 + 125 = 387.5 525/2 = 262.5

Female 175/2 + 125 = 212.5 175/2 = 87.5
The corresponding minimum sum of squared errors is:
(400 - 387.5)2 + (250 - 262.5)2 + (200 - 212.5)2 + (100 - 87.5)2 = 625.
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3.212.  a. As per the exam question, take Male (X1), Female (X2), Urban (X3).
Then the design matrix, X, and response vector Y are:

X = 

1 0 1
1 0 0
0 1 1
0 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

Male Urban
Male Rural

Female Urban
Female Rural

  Y = 

400
250
200
100

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

The vector of parameters is: 
β1
β2
β3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.

b.  For the Gamma Distribution, f(y) = θ-αyα-1 e-y/θ / Γ(α).
ln f(y) = (α-1)ln(y) - y/θ - α ln(θ) - ln[Γ(α)] = (α-1)ln(y) - y/(µ/α) - α ln(µ/α) - ln[Γ(α)]
           = (α-1)ln(y) - α y/µ - α ln(µ) + α ln(α) - ln[Γ(α)].  
With the identity link function: µ = β 1X1 + β 2X2 + β 3X3.
Thus the loglikelihood is: 
(α-1)ln(400) - α 400/(β 1 + β 3) - α n(β 1 + β 3) + α ln(α) - ln[Γ(α)] + 
(α-1)ln(250) - α 250/(β 1) - α ln(β 1) + α ln(α) - ln[Γ(α)] +
(α-1)ln(200) - α 200/(β 2 + β 3) - α ln(β 2 + β 3) + α ln(α) - ln[Γ(α)] +
(α-1)ln(100) - α 100/(β 2) - α ln(β 2) + α ln(α) - ln[Γ(α)]. 
Setting the partial derivative with respect to α 1 equal to zero:
0 = α 400/(β1 + β3)2 - α/(β1 + β3) + α 250/(β1)2 - α/(β1). ⇒ 
400/(β1 + β3)2 + 250/β1

2 = 1/(β1 + β3) + 1/β1.
Setting the partial derivative with respect to β2 equal to zero:
0 = α 200/(β2 + β3)2 - α/(β2 + β3) + α 100/(β2)2 - α/(β2). ⇒ 
200/(β2 + β3)2 + 100/β2

2 = 1/(β2+ β3) + 1/β2.
Setting the partial derivative with respect to β3 equal to zero:
0 = α 400/(β1 + β3)2 - α/(β1 + β3) + α 200/(β2 + β3)2 - α/(β2 + β3). ⇒ 
400/(β1 + β3)2 + 200/(β2 + β3)2 = 1/(β1+ β3) + 1/(β2+ β3).
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c.  For the Gamma Distribution, f(y) = θ-αyα-1 e-y/θ / Γ(α).
ln f(y) = (α-1)ln(y) - y/θ - α ln(θ) - ln[Γ(α)] = (α-1)ln(y) - y/(µ/α) - α ln(µ/α) - ln[Γ(α)]
           = (α-1)ln(y) - α y/µ - α ln(µ) + α ln(α) - ln[Γ(α)].  
With the inverse link function: 1/µ = β 1X1 + β 2X2 + β 3X3.
Thus the loglikelihood is: 
(α-1)ln(400) - α 400(β1 + β3) + α ln(β1 + β3) + α ln(α) - ln[Γ(α)] + 
(α-1)ln(250) - α 250(β1) + α ln(β1) + α ln(α) - ln[Γ(α)] +
(α-1)ln(200) - α 200(β2 + β3) + α ln(β2 + β3) + α ln(α) - ln[Γ(α)] +
(α-1)ln(100) - α 100(β2) + α ln(β2) + α ln(α) - ln[Γ(α)]. 
Setting the partial derivative with respect to β1 equal to zero:
0 = -α 400 + α/(β1 + β3) - α 250 + α/(β1). ⇒ 650 = 1/(β1 + β3) + 1/β1.
Setting the partial derivative with respect to β2 equal to zero:
0 = -α 200 + α/(β2 + β3) - α 100 + α/(β2). ⇒ 300 = 1/(β2+ β3) + 1/β2.
Setting the partial derivative with respect to β3 equal to zero:
0 = -α 400 + α/(β1 + β3) - α 200 - α/(β2 + β3). ⇒ 600 = 1/(β1+ β3) + 1/(β2+ β3).
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(d) f(x) = θ
2π

 
exp[-

θ  x
µ

 - 1⎛
⎝⎜

⎞
⎠⎟

2

2x
 ]

x1.5 . 

Ignoring terms that do not involve µ, ln f(x) = -
θ  x

µ
 - 1⎛

⎝⎜
⎞
⎠⎟

2

2x
  = - θ

2x
 ( x

2

µ2
 - 2 x

µ
 + 1) 

= - θx
2µ2

 + θ
µ

 - θ
2x

.

Using the squared reciprocal link function: 1/µ2 = β1X1 + β2X2 + β3X3.
Thus ignoring terms that do not include µ, the loglikelihood is:
-θ
2

{400(β1 + β3) + 250(β1) + 200(β2 + β3) + 100(β2)} + θ{ β1 + β3  + β1  + β2 + β3  + β2 }.

Setting the partial derivative with respect to β1 equal to zero:

0 = -θ
2

{400 + 250} + θ
2

{1/ β1 + β3  + 1/ β1 }. ⇒ 650 = 1/ β1 + β3  + 1/ β1 .

Setting the partial derivative with respect to β2 equal to zero:

0 = -θ
2

{200 + 100} + θ
2

{1/ β2 + β3  + 1/ β2 }. ⇒ 300 = 1/ β2 + β3  + 1/ β2 .

Setting the partial derivative with respect to β3 equal to zero:

0 = -θ
2

{400 + 200} + θ
2

{1/ β1 + β3  + 1/ β2 + β3 }. ⇒ 600 = 1/ β1 + β3  + 1/ β2 + β3 .

Comment: Using a computer, the fitted parameters in part b are:
β1 = 263.236, β2 = 98.160, β3 = 110.129.
For example, the fitted value for Female and Urban is: 98.160 + 110.129 = 208.29.
The fitted values in part b are:

Gender Urban Rural

Male 373.36 263.24

Female 208.29 98.16
Using a computer, the fitted parameters in part c are:
β1 = 0.00447623, β2 = 0.00789904, β3 = -0.0021321.
For example, the fitted value for Female and Urban is: 1/ (0.00789904 - 0.0021321) = 173.40.
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The fitted values in part c are:
Gender Urban Rural Total

Male 426.60 223.40 650

Female 173.40 126.60 300

Total 600 350 950
The totals for the fitted match those for the data.
These were the equations that needed to be solved for this model in part c.
In general, the estimates will be in balance as they were here, when one uses the canonical link 
function; the canonical link function for the Gamma is the reciprocal link function.
See “A Systematic Relationship Between Minimum Bias and Generalized Linear Models,” 
by Stephen Mildenhall, PCAS 1999. 
Note that when the weights differ by cell, this balance involves weighted averages.
Using a computer, the fitted parameters in part d are:
β1 = 0.0000218789, β2 = 0.000053899, β3 = -0.0000166235.
For example, the fitted value for Female and Urban is: 
1 / 0.000053899 - 0.0000166235  = 163.79.
The fitted values in part d are:

Gender Urban Rural Total

Male 436.21 213.79 650

Female 163.79 136.21 300

Total 600 350 950
Since the canonical link function for the Inverse Gaussian is the squared reciprocal link function, 
again the totals for the fitted match those for the data.
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3.213.  a.  Let β1 represent territory A.! Let β2 represent territory B.
Let β3 represent private passenger.! Let β4 represent light trucks.
(These are not the only choices. We have chosen medium trucks as the base level.) 

Design matrix = X = 

1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 0
0 1 0 1
0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

.

The first row of (1, 0, 1, 0) corresponds to the cell for Territory A (β1) and private passenger (β3).
The second row of (1, 0, 0, 1) corresponds to the cell for Territory A (β1) and light truck (β4).
The third row of (1, 0, 0, 0) corresponds to the cell for Territory A (β1) and medium truck.
(There are other ways to arrange the design matrix.)
The corresponding vector of betas (parameters) is:
(β1 + β3, β1 + β4, β1, β2 + β3, β2 + β4, β2).
b. For a poisson error structure variance is a function of the expected value, while under the 
gamma error structure the variance of an observation is a function of its mean squared.
c. Determine the form of the density for the chosen error structure (distribution of errors.)
Using this density and the chosen link function take a product of the chances of the 
observations; this is the likelihood as a function of the parameters.
Maximize the log of the likelihood function by setting the partial derivatives with respect to each 
of the parameters equal to zero.
Solve the resulting system of equations for the fitted parameters. 
Compute the predicted values.
Comment: In part (a) one could have instead for example taken:
Let β1 be an intercept. Let β2 represent territory A. 
Let β3 represent light trucks. Let β4 represent medium trucks.
In that case, we have taken Territory B / Heavy Trucks as the base level.
Instead, other combinations of territory and truck weight could have been chosen as the base 
level.
If we use an intercept term, then we can have only one coefficient for territory, and two 
coefficients for vehicle type. Including the intercept, we still have a total of four coefficients in our 
model.
In more complicated situations one would not be able to solve the equations for the parameters 
in closed form. Fortunately, there are commercial packages of computer software specifically 
designed to solve and analyze GLMs.
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3.214.  One-way analysis doesn’t consider:
1. Correlations between rating variables, in other words correlations of exposures by cell. 
For example, young people drive older cars more often. Worse loss ratios for older cars can be 
partially driven by the larger proportion of youthful drivers.
For example, age may be correlated with territory if a greater proportion of senior citizens live in 
certain parts of a state. The relative loss ratios for such territories will be better due to the higher 
proportion of drivers who are senior citizens.
2. Interdependencies among rating variables. 
For example, the rate differentials between male and female drivers vary by age.
For example, young drivers who have expensive cars may be poor risks, but old drivers who 
have expensive cars may be good risks.
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3.215.  a) In the absence of any other information, I would choose a Poisson error function 
which is commonly used for frequency.
The frequencies look like they might follow a multiplicative model; the ratios of the columns look 
kind of similar and the ratios of the rows look kind of similar.
(In contrast, the differences in the columns look kind of different and the differences in the rows 
look kind of different. Thus I would not choose an additive model and the identity link function.)
Therefore, I will use a log link function corresponding to a multiplicative model.
g(x) = ln(x).  g-1(x) = ex.
One needs to pick a base level. 
It is likely that Yes/Yes has the most exposures, so I will pick that as the base level.
The vector of model parameters:
Let β0 be the intercept term, which is a parameter which applies to all observations.
Let β1 correspond to no for homeowners.
Let β2 correspond to no for auto policy.

Then the response vector would be: 

Yes HO / Yes Auto
No HO / Yes Auto
Yes HO / No Auto
No HO / No Auto

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 = 

3
5
8
12

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

The design matrix would be: 

1 0 0
1 1 0
1 0 1
1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.   X1 ⇔ No H.O. = 1
Otherwise = 0

⎧
⎨
⎪

⎩⎪
.   X2 ⇔ No Auto = 1

Otherwise = 0
⎧
⎨
⎪

⎩⎪
.

Alternately, the vector of model parameters: Let β1 correspond to yes for auto.
Let β2 correspond to no for auto.   Let β3 correspond to yes for homeowners.

Then the response vector would be: 

Yes HO / Yes Auto
No HO / Yes Auto
Yes HO / No Auto
No HO / No Auto

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 = 

3
5
8
12

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

The design matrix would be: 

1 0 1
1 0 0
0 1 1
0 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

X1 ⇔ Yes Auto = 1
Otherwise = 0

⎧
⎨
⎪

⎩⎪
.   X2 ⇔ No Auto = 1

Otherwise = 0
⎧
⎨
⎪

⎩⎪
.   X3 ⇔ Yes H.O. = 1

Otherwise = 0
⎧
⎨
⎪

⎩⎪
.
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b) Missing data can lead to aliasing. For the missing data, if in most cases both whether it had 
an auto and homeowner policy is missing, then there is the potential problem of aliasing or near 
aliasing.  No data auto and no data homeowners would be either perfectly or highly correlated. 
With aliasing the model parameters make no sense. Near aliasing creates problems with 
convergence of the model. 
A solution would be to exclude these missing data records from modeling. 
Another solution is to eliminate the unknown level from one of the factors so there are no linear 
dependencies. In other words, one further covariate needs to be removed; this could either be 
the “unknown” auto covariate or the “unknown” homeowners covariate. 
Comment: One can make other choices in part (a) for the vector of parameters and get full credit 
provided the design matrix is consistent.
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3.216.  a) Increase of 7.0% ⇔ -0.4172.! 2 phone calls  ⇔  -0.4239.
 -0.4172 - 0.4239 + 1.793 = 0.9519.
Using the logistic model, probability of renewal is: exp(0.9519) / {1 +  exp(0.9519)} = 72.15%.
b) I would not use this strategy:
1. There is no reasonable connection between insurance losses and the number of times an 
insured calls an insurer. Charging those who call the insurer more would not be acceptable to 
the public.
Insurance regulators are very unlikely to allow the use of this rating variable.
While causality is not required, this is an extreme case of the opposite of causality.
2. The proposed variable is easily manipulated by the insured.
3. The proposed variable lacks constancy; the number of phone calls from an insured is likely to 
change from year to year.
4. We do not know why the rate of renewal decreases with number of phone calls made by the 
insured to the insurer. Could this be because when they call, insureds get impolite or 
incompetent service? In that case, a better strategy would be to improve the insurer’s service so 
that they do not lose so many customers.
5. The number of phone calls is likely related to other variables which are more directly related 
to renewal probability, such as moving or age. The actuary should go back and try to find 
variables that are the underlying reasons for the model results.
6. If many of these calls are from insureds who are making claims, then perhaps the lower 
renewal is due to poor claims service. It would be a better strategy to improve claims service.
7. By raising the rate of insureds who made phone calls, you are making their future renewal 
rate even lower. The insurer is likely to lose a lot of insureds if it followed this strategy.
Alternately, I would use this strategy:
1. When pricing based on the lifetime of a policy, it makes sense to take into account the 
expected renewal rate. Those with a lower expected renewal rate, such as those who make 
several phone calls to the insurer, should be charged more, all else being equal.
2. Those who call the insurer more often are likely to be reporting a claim. Those with claims in 
the past, have a higher expected future claim frequency. So it makes sense to charge those with 
more calls more, since their future average claim frequency is higher than average. 
3. Those who call more often in the past are more likely to call more often in the future, resulting 
in higher expense for the insurer.
4. Those who call the insurer more often are more likely to make a small claim when they suffer 
a small loss, and thus have higher expected future loses.
Comment: I found it much, much easier in this case, to argue against using the strategy. 
(My reasons in favor other than the first, have nothing to do with the given model.) 
On your exam, pick whichever side of the argument allows you to quickly come up with two 
good reasons.
Without diagnostics there is no way to check the statistical significance of the modeled result.
Some of the extra phone calls may be from insureds who got big increases and are calling to 
complain or to see if this insurer will match a quote from another insurer. Thus the two variables 
in the model may be correlated.
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3.217.  (a) The first column refers to β1 whether or not we have a male,
the second column refers to β2 whether or not we are in Territory A,
the third column refers to β3 the intercept, and thus is all ones.

X = 

1 1 1
0 1 1
1 0 1
0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

A, Male
A, Female
B, Male

B, Female

! ! or X = 

1 1 1
1 0 1
0 1 1
0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

A, Male
B, Male

A, Female
B, Female

(b) Y = 

700/1400
400/1000
600/1000
420/1200

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 =  

0.50
0.40
0.60
0.35

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

A, Male
A, Female
B, Male

B, Female

! or Y = 

0.50
0.60
0.40
0.35

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

A, Male
B, Male

A, Female
B, Female

(c) With a Normal error function and an identity link function, this is the same as a multiple 
regression.
Assuming β3 = 0.35, then the squared error is: 
! 1400 (β1 + β2 + 0.35 - 0.5)2 + 1000 (β2 + 0.35 - 0.4)2 
! + 1000 (β1 + 0.35 - 0.6)2 + 1200 (0.35 - 0.35)2 =
1400 (β1 + β2 - 0.15)2 + 1000 (β2 - 0.05)2 + 1000 (β1 - 0.25)2.
Setting the partial derivative with respect to β1 equal to zero: 
0 = 2800(β1 + β2 - 0.15) + 2000(β1 - 0.25). ⇒ 4800 β1 + 2800 β2 = 920.
Setting the partial derivative with respect to β2 equal to zero: 
0 = 2800(β1 + β2 - 0.15) + 2000(β2 - 0.05). ⇒ 2800 β1 + 4800 β2 = 520.
⇒ β2 = (520 - 2800 β1) / 4800.
Plugging back into the first equation: 4800 β1 + 2800 (520 - 2800 β1) / 4800 = 920.
⇒ β1 = 0.1947. ⇒ β2 = -0.0052.
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Alternately, without taking into account exposures by cell, the squared error is: 
(β1 + β2 + 0.35 - 0.5)2 + (β2 +  0.35 - 0.4)2 + (β1 + 0.35 - 0.6)2 + (0.35 - 0.35)2 =
(β1 + β2 - 0.15)2 + (β2 - 0.05)2 + (β1 - 0.25)2.
Setting the partial derivative with respect to β1 equal to zero: 
0 = 2(β1 + β2 - 0.15) + 2(β1 - 0.25). ⇒ 4 β1 + 2 β2 = 0.8.
Setting the partial derivative with respect to β2 equal to zero: 
0 = 2(β1 + β2 - 0.15) + 2(β2 - 0.05). ⇒ 2 β1 + 4 β2 = 0.4.
⇒ β2 = (0.4 - 2 β1) / 4 = 0.1 - 0.5β1.
Plugging back into the first equation: 4 β1 + 2 (0.1 - 0.5β1) = 0.8.
⇒ β1 = 0.2. ⇒ β2 = 0.

Alternately, in either case one can fit via maximum likelihood and get the same result as by 
minimizing the squared errors.

For the Normal Distribution, f(x) = 
exp[- (x-µ)

2

2σ2
]

σ 2π
.   ln [f(x)] = -

(x-µ)2
2σ2  - ln[σ] - ln[2π]/2.

Without taking info account exposures by cell, the loglikelihood is:
- (β1 + β2 + 0.35 - 0.5)2 / (2σ2) - (β1 + 0.35 - 0.4)2 / (2σ2) - (β2 + 0.35 - 0.6)2 / (2σ2) 
! - (0.35 - 0.35)2 / (2σ2) - 4 ln[σ] - ln[2π]/2.
Setting the partial derivative of the loglikelihood with respect to β1 equal to zero: 
0 = -(β1 + β2 - 0.15) / σ2 - (β1 - 0.25) / σ2. ⇒ 2 β1 + β2 = 0.4.
Setting the partial derivative with respect to β2 equal to zero: 
0 = -(β1 + β2 - 0.15) / σ2 - (β2 - 0.05) / σ2. ⇒ β1 + 2 β2 = 0.2.
Solving two equations in two unknowns: β1 = 0.2, and β2 = 0.
Setting the partial derivative with respect to σ equal to zero: 
0 = (β1 + β2 - 0.15)2 / σ3 - (β1 - 0.05)2 / σ3 - (β2 - 0.25)2 / σ3 - 4 /σ.
⇒ σ2 = {(0.2 + 0 - 0.15)2 + (0.2 + 0 - 0.05)2 + (0.2 + 0 - 0.25)2} / 4 = 0.006875.
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(d) 1. The Normal Distribution allows negative values, while the Poisson Distribution does not. 
Since claim frequencies are never negative, the Poisson error structure is preferable here.

2. The Normal error structure assumes that the process variances of the frequency in the four 
cells are equal. In contrast, a Poisson error structure assumes that the process variances of the 
frequency in the four cells are equal to their means. I would expect that those cells with higher 
expected frequencies would have higher process variances than those with lower expected 
frequencies, and thus would prefer the Poisson error structure to the Normal.

3. The log link function would assume multiplicative relativities, while the identity link function 
assumes additive relativities. If the relationship is approximately multiplicative, then the log link 
function would do a better job than the identity link function.

Comment: In parts (a) and (b), the order in which one lists the rows is arbitrary;
it would be a good idea to label what you did. 
In part (c), if one includes the exposures in the sum of squared errors, that is equivalent to using 
exposures as the prior weights in the GLM, or using exposures in an offset term.
Including the exposures is equivalent to doing a weighted multiple regression.
The observed frequencies are:

Gender Territory A Territory B Difference

Male 0.50 0.60 0.10
Female 0.40 0.35 -0.05

Difference -0.10 -0.25
The differences between territories are not similar for the two genders.
The differences between genders are not similar for the two territories.

Gender Territory A Territory B Ratio

Male 0.50 0.60 1.2
Female 0.40 0.35 0.875

Ratio 0.80 0.583
The ratios between territories are not similar for the two genders.
The ratios between genders are not similar for the two territories.
Thus perhaps neither an additive nor a multiplicative relationship is appropriate.
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3.218.  (a) φ is the scale or dispersion parameter, which scales the variance.
ωi is a (prior) weight, representing the amount of data we have for observation i; the variance is 
inversely proportional to the volume of data.
(b) i. Gamma Distribution is most commonly used to model the error structure for severity; 
it works well in many situations based on diagnostics. 
The Gamma is continuous with support from zero to infinity.
The gamma distribution also has an intuitively attractive property for modeling claim amounts 
since it is invariant to measures of currency. In other words measuring severities in dollars and 
measuring severities in cents will yield the same results using a gamma multiplicative GLM. 
(This is not true of some other distributions such as Poisson, but would be for the Inverse 
Gaussian.) 
For the Gamma: V(µi) = µi2.
ii. For policy renewal a Bernoulli or Binomial is used, since policy renewal is a yes/no process.
For the Bernoulli: V(µi) = µi (1 - µi).
For the Binomial representing μ trials (μ policies): V(µi) = µi (1 - µi) / m.
(c) 1. For severity, ωi would be the number of claims, the measure of how much data we have.
2. For policy renewal, if using the Bernoulli, ωi would be the number of policies.
If using the Binomial, ωi = 1.
Comment: The current syllabus reading discusses weights in its Section 2.5. However, unlike 
the previous syllabus reading, it does not discuss the weights to use for the case of modeling 
policy renewals. If using a Binomial, then m is the number of policies; we were given the 
observed renewal rate for a set of m similar polices. The weight is already implicitly included; the 
larger m the more weight to the observation from that set of policies. The Bernoulli instead 
would model each individual policy; we would need to specifically weight the data from a larger 
set of policies more heavily.

3.219.  Smaller Bayesian Information Criterion is better.
BIC = -2 (maximum loglikelihood) + p ln(n), 
where n = 1000 is the sample size and p is the number of parameters.
Since the scaled deviance = (2) (saturated max. loglikelihood - maximum likelihood for model), 
we can compare between the models: 
Scaled Deviance + p ln(n) = Scaled Deviance + p ln(1000).
(The maximum Iikelihood for the saturated model is the same in each case.)

Model # p Scaled Deviance Scaled Deviance + p ln(1000)

1 2 1085.0 1098.82
2 3 1084.8 1105.52
3 3 1083.0 1103.72
4 4 1081.9 1109.53
5 5 1081.6 1116.14

The smallest Scaled Deviance + p ln(n) is for Model 1. 
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3.220.  Smaller Akaike Information Criterion is better.
AIC = -2 (maximum loglikelihood) + (number of parameters)(2). 
Since the scaled deviance = (2) (saturated max. loglikelihood - maximum likelihood for model), 
we can compare between the models: 
Scaled Deviance + p 2 = Scaled Deviance + (number of parameters)(2).
(The maximum Iikelihood for the saturated model is the same in each case.)

Model # p Scaled Deviance Scaled Deviance + (number of parameters)(2)

1 2 1085.0 1089.0
2 3 1084.8 1090.8
3 3 1083.0 1089.0
4 4 1081.9 1089.9
5 5 1081.6 1091.6

The smallest AIC is a tie between Model 1 and Model 3. 

3.221.  Estimated mean severity for a rural male is: exp[2.32 - 0.64 + 0.76] = 11.473.
For the Gamma Distribution, Var[Y] = φµ2 = (2) (11.4732) = 263.3.

3.222.  exp[βx] = exp[-1.485 + 0 - 1.175 - 0.101] = e-2.761 = 0.06323.

For the logit link function: µ = eβx

eβx + 1
 = 0.06323 / (0.06323 + 1) = 5.95%.

3.223.  µ = exp[-2.633 + 0.132 + 0] = 0.07957. 

3.224.
Variable Number of Parameters

Vehicle Price 4
Driver age 2 - 1 = 1
Number of drivers 4 - 1 = 3
Gender 2 - 1 = 1
Interaction Gender & Driver Age 1
Maximum number of parameter is: 4 + 1 + 3 + 1 + 1 = 10.
Comment: A model with only Vehicle Price would involve: β0 + β1 (vp) + β2 (vp)2 + β3 (vp)3.
The interaction of gender and driver age only uses one parameter since each of gender and 
driver age only use one parameter.

3.225.  Smaller AIC is better, so we prefer Model 1.
exp[βx] = exp[-3.264 + (12)(0.212) + 0.727] = e0.007 = 1.007.

For the logit link function: µ = eβx

eβx + 1
 = 1.007 / (1.007 + 1) = 50.2%.
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3.226.  Let x be the number of additional parameters for the new model.
Let 

 
ℓ1 be the loglikelihood for the original model, and 

 
ℓ2  be the loglikelihood for the model 

including the new variable.
Scaled Deviance = (2) (saturated max. loglikelihood - maximum likelihood for model).
Thus the change in model scaled deviance is: -2(

 
ℓ2  - 

 
ℓ1) = -53.

AIC = (-2) (maximum loglikelihood) + (number of parameters)(2).
Thus the change in AIC is: (-2)(

 
ℓ2  - 

 
ℓ1) + 2x = -53 + 2x = -47. 

� 

⇒ x = 3.
BIC = (-2) (maximum loglikelihood) + (number of parameters) ln(number of data points).
Thus the change in BIC is: (-2)(

 
ℓ2  - 

 
ℓ1) + x ln(n) = -53 + 3 ln(n) = -32. 

� 

⇒  n = e7 = 1097.

3.227.  We have to assume equal exposures in each of the four cells.
The mean modeled frequencies are:

State A State B 

Male exp[β1 + β3] exp[β1]

Female exp[β2 + β3] exp[β2]
The loglikelihood ignoring terms that do not depend on the betas is: 
-exp[β1 + β3] + 0.0920 (β1 + β3) - exp[β2 + β3] + 0.1500 (β2 + β3)  
!  - exp[β1] + 0.0267 β1 - exp[β2] + 0.0500 β2.
Setting the partial derivative of the loglikelihood with respect to β1 equal to zero: 
-exp[β1 + β3] + 0.0920 - exp[β1] + 0.0267 = 0.
Given β3 = 1.149: -exp[β1] e1.149 + 0.0920 - exp[β1] + 0.0267 = 0.

� 

⇒ exp[β1] = (0.0920 + 0.0267) / (1 + e1.149) = 0.02857.

� 

⇒ exp[β1 + β3] = 0.02857 e1.149 = 0.0901 = expected frequency of a male risk in State A.
Comment: Similar to 8, 11/13, Q.2c.
What the exam questions calls “the Iikelihood function” is the loglikelihood function.
β̂1 = ln(0.02857) = -3.555.
Setting the partial derivative of the loglikelihood with respect to β2 equal to zero: 
-exp[β2 + β3] + 0.1500 - exp[β2] + 0.0500.

Given β3 = 1.149: -exp[β2] e1.149 + 0.1500 - exp[β2] + 0.0500 = 0.

� 

⇒ exp[β2] = (0.1500 + 0.0500) / (1 + e1.149) = 0.04813. 

� 

⇒  β̂2  = -3.034.
Using a computer, without being given β3, the maximum Iikelihood fit is:
β̂1 = -3.5555, β̂2  = -3.0338, and β̂3  = 1.1490.
The mean modeled frequencies are:

State A State B

Male exp[-3.5555 + 1.1490] = 9.01% exp[-3.5555] = 2.86%

Female exp[-3.0338 + 1.1490] = 15.19% exp[-3.0338] = 4.81%
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3.228.  In order to solve for the unknown intercept, we use the given probability of accident for a 
driver in age group 2, from area C and with vehicle body type Other. 
0.22 = exp[x + 0.064 - 0.371] / {exp[x + 0.064 - 0.371]  + 1}.

� 

⇒ exp[x + 0.064 - 0.371] = 0.22 / (1 - 0.22) = 0.28205. 

� 

⇒ x + 0.064 - 0.371 = ln[0.28205] = -1.2657. 

� 

⇒ x = -0.9587.
Thus for a driver in age group 3, from area C and with vehicle body type Sedan, the odds (ratio) 
is: π / (1 - π) = exp[-0.9857 + 0 + 0 + 0] = 0.3834.
Comment: The probability of having an accident for a driver in age group 3, from area C and 
with vehicle body type Sedan is: 0.3834 / (1 + 0.3834) = 0.277.  
Note that 0.277 / (1 - 0.277) = 0.383.

3.229.  Exp[-2.358 + 0.905]
1 + Exp[-2.358 + 0.905] 

 = 0.190.

3.230.  exp[2.100 + 1.336 + 1.406 + 1.800] = 766.63.

3.231.  For an observation from Zone 4, with Vehicle Class Sedan and Driver Age Middle age,
the mean is: exp[2.1] = 8.166.
For the Gamma Distribution the variance is: φ µ2 = (1) (8.1662) = 66.7.

3.232.  exp[1.530 + 0.735 - 0.031]
1 + exp[1.530 + 0.735 - 0.031]

 = 90.33%.

3.233.  Since Model 2 has one fewer parameter than model 3, 
model 2 has 9 degrees of freedom.
AIC = (-2) (maximum loglikelihood) + (number of parameters)(2).
BIC = (-2) (maximum loglikelihood)) + (number of parameters) ln(number of data points).
Therefore from Model 1: 95,473.61182 = (-2)(-47,704) + (5) ln(n). 

� 

⇒ n = 500,000.
For Model 2, AIC = -47,495 + (9)(2).
For Model 2, BIC = -47,495 + (9) ln(500,000).
The absolute difference between the AIC and the BIC for Model 2 is:
 (9) ln(500,000) - 18  = 100.1. 

3.234.  Graph one shows an increasing variance with fitted value.
Homoscedasticity would be constant variance, so statement 1 is false; statement 2 is true.
The residuals in Graph 2 are not symmetric around zero; there are more extreme positive values 
than there are extreme negative values. This indicates that the residuals are not normally 
distributed.
Statement 3 is true.
Comment: In Graph 2 it is not clear the meaning of the horizontal lines.
A Normal Q-Q Plot would have been much more useful than Graph 2.
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3.235.  The model with the smallest AIC is usually the best model in model selection process,
all other things being equal.  Statement A is not true.
The model with the smallest BIC is usually the best model in model selection process,
all other things being equal. Statement B is not true.
The model with the smallest scaled deviance is usually the best model in model selection 
process, all other things being equal. Statement C is not true.
AIC = (-2) (maximum loglikelihood) + (number of parameters)(2).
BIC = (-2) (maximum loglikelihood)) + (number of parameters) ln(number of data points).
The penalty for AIC is (number of parameters)(2).
The penalty for BIC is (number of parameters) ln(number of data points).
So the penalties are equal for: 2 = ln(number data Points). ⇒  number of data points = e2 = 7.4.
Thus, other things equal, when number of observations ≥ 8, BIC penalizes more for the number 
of parameters used in the model than AIC. Thus statement E is true.
Comment: Since statements D and E are opposites, it is likely that one of them is true.

3.236.  Change in AIC is: (2) (number of parameters added).
Change in BIC is: ln(1500) (number of parameters added).
We want: ln(1500) (number of parameters added) > (2) (number of parameters added) + 25.

� 

⇒ Number of parameters added > 4.7. 

� 

⇒ Number of added parameters is at least 5.

� 

⇒ Minimum possible number of levels in the new categorical variable is: 5 + 1 = 6.

3.237.  100,000 exp[-15 - 1.2 + (0.15)(25) + (0.004)(252) + (0.012)(25)] 
! = 100,000 e-9.65 = 6.44 deaths.

3.238.  i. Where the variable in question relates to a policy option selected by the insured, 
having its factor reflect anything other than the excess losses due to higher limit is not a good 
idea. One can get counterintuitive results such as charging less for more coverage.
Even if the indicated result is not counterintuitive, to the extent that the factor differs from the 
pure effect on loss potential, it will affect the way insureds choose coverage options in the future. 
Thus, the selection dynamic will change and the past results would not be expected to replicate 
for new policies. For this reason it is recommended that factors for coverage options such as 
increased limit factors be estimated outside the GLM, using traditional actuarial  techniques. 
(The resulting factors should then be included in the GLM as an offset.)
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ii. I assume what is intended is that the number of coverage changes during the current policy 
period will be used to help rate the policy during its next policy period. (We are not given any 
information on whether the number of coverage changes in a policy period is related to the 
insurance costs the following period compared to otherwise similar insureds.)
The number of changes during a given policy period is not a good classification variable.
It is something that is likely to be zero for many policy periods, and vary somewhat randomly 
over time. If those with more coverage changes are changed more it is unlikely to be acceptable 
to insurance regulators and the public. If those with more coverage changes are changed more, 
then it will give insureds less incentive to make necessary coverage changes during a policy 
period; some of these coverage changes would have resulted in additional premiums for the 
insurer.
Alternately, the information will not be available for new business since we are building a GLM 
for the prospective period.
Alternately, the number of coverage changes is likely to change from what it is in the current 
policy period and thereafter year by year.
iii. Territories are not a good fit for the GLM framework. You may have thousands of zipcodes to 
consider and aggregating them to a manageable level will cause you to lose a great deal of 
important signal. If one does not aggregate the large number of zipcodes, then there are too 
many parameters which can lead to overfitting.
Using a spatial smoothing technique would be a more appropriate technique; one would then 
include the value determined for ZIP code as an offset term in the GLM.

(b) 1. One can get counterintuitive results such as charging more for less coverage.
2. Even if the indicated result is not counterintuitive, to the extent that the factor differs from the 
pure effect on loss potential, it will affect the way insureds choose coverage options in the future. 
Thus, the selection dynamic will change and the past results would not be expected to replicate 
for new policies. 
3. Deductibles should lower frequency (small losses below deductible not reported) but usually 
increase severity (since claims that do get reported are higher average cost). This violates the 
assumption for the Tweedie Distribution, that a lower pure premium is due to both a lower 
frequency and a lower severity.
(c) One can calculate deductible relativities from loss elimination ratios. 
Deductible Relativity = (1 - LER for chosen deductible) / ( 1 - LER for Base Deductible).
Loss elimination ratios can be estimated from size of loss data. 
Loss elimination ratio = (Limited Expected Value at Deducible Amount) / Mean.
In the GLM, one would then include an offset of ln[deductible relativity].
Comment: While the average size of non-zero payment, equal to the mean residual life, usually 
increases as the size of deductible increases, this is not always the case.
Deductible factors may produce higher relativities at higher deductibles due to factors other than 
pure losses elimination:
1. Insureds at high loss potential and high premiums may be more likely to elect high 
deductibles in order to reduce their premium.
2. Underwriters may force high deductibles on riskier insureds.
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3.239.  a. Sort the risks from best to worst based on the model predicted loss.

Risk Model
Predicted Loss

Actual
Loss

Cumulative
Losses

Cumulative
% of Losses

5 200 400 400 8.0%
2 500 220 620 12.4%
4 800 850 1,470 29.4%
3 1,500 1,480 2,950 59.0%
1 2,000 2,050 5,000 100.0%

Total 5000
On the x-axis, plot the cumulative percentage of exposures.
I will assume that each risk has the same number of exposures.
On the y-axis, plot the cumulative percentage of actual losses.

Line of Equality (80,59)

(60, 29,4)

(40, 12.4)
(20, 8)

(100,100)

(0,0)

20 40 60 80 100
Percent of Expos

20

40

60

80

100
Precent of Losses

b. The Gini index is twice the area between the Lorenz Curve and the line of equality.
The higher the Gini Index, the better the rating plan is at identifying risk differences, in other 
words the rating plan has more lift.
“The Gini index can also be used to measure the lift of an insurance rating plan by quantifying its 
ability to segment the population into the best and worst risks.”
Comment: See Section 7.2.4 in Generalized Linear Models for Insurance Rating.
Usually, one would be working with thousands of risks.
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3.240. (a) exp[0.910 + (3)(0.013) + ln[25,000] (-0.187) + (8)(0.062)] = e-0.4357 = 64.7%. 
(b) One could take the coefficients of the new business model as a given, other than b0, which 
will be re-estimated.
Let the prior year claim count be x for renewal business.
Then the renewal business model is: 
µ = exp[β0 + 0.013 age + (-0.187) logprem + 0.62 locont + β4 x].
We would fit the model via maximum likelihood to the data for renewal business, taking into 
account the form of density for the Tweedie Distribution.
Alternately, one can fit a single model to the data for new and renewal business.
Let the prior year claim count be x for renewal business
Let D = 0 if new business and 1 if renewal business.
Then the  combined model is: µ = exp[β0 + β1 age + β2 logprem + β3 locont + D β4  + D β5 x].
We would fit the model via maximum likelihood to the combined data, taking into account the 
form of density for the Tweedie Distribution.
(c) 1. Time-consistency. One can fit the model to the data for separate years and compare the 
coefficients. If the fitted coefficients are similar, that indicates stability over time.
Alternately, one could introduces dummy variables into the model for the various years of data.
For example, if we have data from 2012, 2013 and 2104, 
then we could take 2012 = base year, x5 = 1 if 2013, x6 =1 if 2014.
Then test whether the coefficients of these variables are significantly different from zero. If one 
or more of the fitted coefficients are significantly different than zero, that indicates instability over 
time.
2. Bootstrapping. Create multiple datasets from the initial dataset by sampling with replacement. 
Run the model on each sampled set. Assess stability of estimates of coefficients by comparing 
the results from each run. 
3. Cross-Validation. Split the data into k parts and run the model on the (k-1) parts, then validate 
the result on the remaining part. Compare how similar the estimates are from the k iterations to 
assess variable stability.
4. Validation on Holdout Dataset. Split the data into two subsets, training and holdout. Determine 
the best model on the training set. Ideally, this model should fit well the holdout data.
5. Cook’s Distance. Sort the observations based on their Cook’s Distance value (higher distance
= more influence on the model.) Remove one or more of the most influential observations and 
rerun the model on this new set of data to see the effect on estimated parameters.
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3.241. (a) For the base model:
AIC = (-2)(-750) + (2)(10) = 1520.
BIC = (-2)(-750) + 10 ln[1,000,000] = 1638.2.
For the new model:
AIC = (-2)(-737.5) + (2)(15) = 1505.
BIC = (-2)(-737.5) + 15 ln[1,000,000] = 1682.2.
(b) AIC is preferable. As here, most actuarial models involve a lot of data points. Therefore, the 
penalty for more parameters is very large for the BIC. Using BIC will tend to result in too simple 
models. In contrast, AIC does not depend on the number of data points.
(c) Based on part (b), I will rely on AIC.
Smaller AIC is better, so I will recommend the new model.
Comment: See Section 6.2.2 in Generalized Linear Models for Insurance Rating.
If one instead relied on BIC, the base model would be preferred.
Scaled Deviance = 2 (loglikelihood of saturated model - loglikelihood of model).
Thus equivalently to using AIC, one could compare models using: Scaled Deviance + 2p.
For the base model, Scaled Deviance + 2p = 500 + (2)(10) = 520.
For the new model, Scaled Deviance + 2p = 475 + (2)(15) = 505.
Since 505 < 530, we prefer the new model based on this criterion.
Equivalently to using BIC, one could compare models using: Scaled Deviance + p ln[N]..
For the base model, Scaled Deviance + 2p = 500 + 10 ln[1 million] = 638.16.
For the new model, Scaled Deviance + 2p = 475 + 15 ln[1 million] = 682.23.
Since 638.16 < 682.23, we prefer the base model based on this criterion.
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3.242. (a) 1. Attempting to test the performance of any model on the same set of data on which 
the model was built will produce overoptimistic results. Using the training data to compare this 
model to any model built on different data would give our model an unfair advantage.
2. As we increase the complexity of the model, the fit to the training data will always get better. 
In contrast, for data the model fitting process has not seen, additional complexity may not 
improve the performance of a model; as the model gets more complex its performance on the 
holdout data (test data) will eventually get worse, as shown in the figure in this question. 
(b) Model 2 has the right balance, since it has the smallest test MSE.
Model 1 is too simple  (fewer degrees of freedom than Model 2), while model 3 is too complex 
(more degrees of freedom than Model 2).
(c) “Out-of-time validation is especially important when modeling perils driven by common 
events that affect multiple policyholders at once. An example of this is the wind peril, for which a 
single storm will cause many incurred losses in the same area. If random sampling is used for 
the split, losses related to the same event will be present in both sets of data, and so the test set 
will not be true unseen data, since the model has already seen those events in the training set. 
This will result in overoptimistic validation results. Choosing a test set that covers different time 
periods than the training set will minimize such overlap and allow for better measures of how the 
model will perform on the completely unknown future.”
Alternately, as in Couret and Venter, one may select either the even or odd years of data as the 
training set and the other as the holdout set, in order to be neutral with respect to trend and 
maturity.
Comment: See Section 4.3 of Generalized Linear Models for Insurance Rating.
The figure shown is very similar to Figure 7 in Generalized Linear Models for Insurance Rating. 
We are interested in how the GLM will perform at predicting the response variable on some 
future set of data rather than on the set of past data with which we are currently working.
Our goal in modeling is to find the right balance where we pick up as much of the signal as 
possible with minimal noise, represented in this case by Model 2. 
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3.243.  A simple quintile plot is a simple quantile plot with 5 buckets.
● Sort the dataset based on the model predicted fraud rate from smallest to largest.
● Group the data into 5 buckets with equal volume. (In this case 2000 claims in each.) 
● Within each group, calculate the average predicted fraud rate based on the model,
! and the average actual fraud rate.
● Plot for each group, the actual fraud rate and the predicted fraud rate.

The saturated model has as many predictors as data points. Thus for the saturated model, the 
predictions exactly match the observations for each claim. In this case, 1000 of the claims 
involve fraud, and would all be placed in the last quintile. Thus the last quintile would consist of 
1000 claims with fraud and 1000 claims without fraud.
The simple quintile plot:
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The null model, has no predictors, only an intercept. Thus for the null model the prediction is the 
same for every record: the grand mean. 
In this case, the overall probability of fraud is: 1,000/10,000 = 10%.
Since every risk has the same prediction, one would assign them to buckets at random. 
Thus all of the actuals by quintile should be close to the grand mean, with small differences due 
to the randomness of assignments. The simple quintile plot:
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“A model that could be used in practice”, would have the actuals increase monotonically, have 
good but not perfect predictive accuracy, and a reasonably large vertical distance between the 
actuals in the first and last quintiles. A simple quintile plot:

Comment: See Sections 6.1.1 and 7.2.1 of GLMs for Insurance Rating. 
Combines separate ideas in the syllabus reading.
There are many possible examples of the last plot.
Since the records are ordered by predicted values, the records in each bucket change for each 
graph. Thus, actuals are not the same for each graph.
Quintile plots are sorted by predicted values from smallest to largest value. Thus the predicted 
values must be monotonically increasing (or in the case of the null model equal). Actuals need 
not be monotonically increasing, although that is desirable.
In every graph, the average of the actuals should be the grand mean of 10%. 
In the final plot, the average of the predicteds should be close to if not equal to 10%; the GLM 
may have a small bias.
In the final plot, the predicted and actuals for the final quintile should each be less than the 50% 
in the saturated model. In the final plot, the predicted and actuals for the final quintile should 
each be more than the 10% in the null model.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 579
 



3.244. 
25% Threshold25% Threshold 50% Threshold50% Threshold

Claim # Fraud Predict. Predict.
1 Y N False Neg. N False Neg.
2 N N True Neg. N True Neg
3 N N True Neg. N True Neg.
4 N Y False Pos. Y False Pos.
5 Y Y True Pos. Y True Pos.
6 Y Y True Pos. N False Neg.
7 N N True Neg. N True Neg.
8 Y Y True Pos. Y True Pos.
9 N Y False Pos. Y False Pos.

10 N Y False Pos. N True Neg.
(a)  

25% Threshold25% Threshold25% Threshold
PredictedPredicted

Actual Fraud No Fraud Total
Fraud true pos.:  3 false neg.: 1 4

No Fraud false pos.: 3 true neg.:  3 6
Total 6 4 10

50% Threshold50% Threshold50% Threshold

PredictedPredicted

Actual Fraud No Fraud Total

Fraud true pos.:  2 false neg.: 2 4

No Fraud false pos.: 2 true neg.:  4 6

Total 6 4 10
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(b) Sensitivity = True Positives
Total Number of Events

 = Correct Predictions of Fraud
Total Number of Fraudulent Claims

.  

Specificity = True Negatives
Total Number of Non-Events

 = Correct Predictons of No Fraud
Total Number of Nonfraudulent Claims

.

25% threshold: sensitivity = 3/4, and specificity = 3/6 = 1/2.! ! Graph (1 - 1/2, 3/4).
50% threshold: sensitivity = 2/4 = 1/2, and specificity = 4/6 = 2/3.! Graph (1 - 2/3, 1/2).
The ROC Curve, plus the 45-degree comparison line:

(c) Using a 25% threshold results in more predictions of fraud than using a 50% threshold.
Therefore, the 25% threshold has greater sensitivity, more true positives, which is good;
however, this is at the cost of lower specificity, more false positives, which is bad.
Alternately, Advantage: You will catch more actual fraud claims because you will have a higher 
true positive rate. Disadvantage: You will have a higher false positive rate as well, which means
you will waste resources to review claims that are not fraudulent.
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(d) There are few claims, but they are large. Thus we are very willing to spend money 
investigating claims for possible fraud; we do not want to miss any true positives and are willing 
to live with false positives. Therefore, we would prefer the lower threshold of 25%, which has 
greater sensitivity.
Alternately, a threshold of 0.25 is more appropriate. The high severity makes the cost of not 
investigating a fraudulent claim very high. The low frequency means that the number of 
additional claims that will need to be investigated is not very large. The cost of investigating 
these few additional claims is far less than the cost of potentially missing a few fraudulent claims 
at a higher discrimination threshold.
Comment: See Table 13 and Figure 26 in GLMs for Insurance Rating.
According to the CAS Examiner’s Report, in part (a) one was required to show a table similar to 
the one I have, showing the origin of the true positives, false positives, true negatives, and false 
negatives.

3.245.  Xβ = 2 + (2)(1) + (1)(-1) = 3.
The Gamma has the inverse as its canonical link function.
1/ (Xβ) = 1/3.
The Poisson has the log as its canonical link function.
exp[Xβ] = e3 = 20.09.
The Binomial has the logit as its canonical link function.
exp[Xβ] / {1 + exp[Xβ]} = e3 / (1 + e3) = 0.9526.
1/3 < 0.9525 < 20.09.  Thus the correct ordering is: I < III < II.
Comment: The Normal has the identity as its canonical link function.

3.246.  The base rate is charged to Male and Territory Q.
Using the log link function, βTerr = ln[545/148] = 1.3036.
βGend = ln[446/148] = 1.11031.
ln[4024/148] = βTerr + βGend + βInter.
⇒ 3.3028 = 1.3036 + 1.11031 + βInter. ⇒ βInter = 0.8961.

Comment: 148 exp[1.3036 + 1.11031 + 0.8961] = 4024.
ln(µ) = β + βTerr XR + βGend XF + βInter XR XF,
where XR = 1 if territory R and zero otherwise,
and XF = 1 if Female and zero otherwise.

3.247.  Xβ = 5 + (-0.65)(5) = 1.75.  The odds are: e1.75 = 5.75.
Alternately, for the logistic model: π̂  = e1.75 / (1 + e1.75) = 0.852.
The odds are: π̂ / (1 - π̂ ) = 0.852 / (1 - 0.852) = 5.75.
Comment: We have estimated that the probability of renewal is 5.75 times the probability of a 
nonrenewal. 
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3.248. (a) i. One can bin driver age into groups. 
For this example three bins may work well: 18 to 25, 26 to 80, above 80.
ii. One can use hinge functions. A hinge function is of the form: (X - c)+ = max(0, X - c).
This will result in a piecewise linear function, with a change in slope at each breakpoint ci. 
For this example, I would choose breakpoints at 25 and 80.
(b) i. With binning: Continuity is not guaranteed.
Variation within intervals is ignored.
There may not be enough data in each bin to be credible.
There could be non-intuitive results, such as reversals.
ii. Using hinge functions:
The breakpoints must be selected by the user.
Comment: In both cases, more parameters are added to the model; the principal of parsimony 
states that we prefer a simpler model with fewer parameters, all else being equal.
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3.249. (a) Assuming model A has an intercept, adding driver age using a second order 
polynomial adds two parameters.
i. Unscaled Deviance = 
φ 2 {(loglikelihood for the saturated model) - (loglikelihood for the fitted model)}.
DA = (1.75)(2) {-1000 - (-1500)} = 1750.  DB = (1.75)(2) {-1000 - (-1465)} = 1627.5.

F = (DA - DB) / (number of added parameters) 
 φ̂B

 = {(1750 - 1627.5) / 2} / 1.75 = 35.

We compare to the given critical value of 3.183.
Since 35 > 3.183, model B is significantly better than model A.
Driver age should be included in the rating plan.
ii. Let p be the number of fitted parameters for Model A.
AICA = (-2)(-1500) + 2p = 3000 + 2p.
AICB = (-2)(-1465) + 2(p+2) = 2934 + 2p.
Since AICB < AICA, model B is better than model A.
Driver age should be included in the rating plan.
iii. Let n be the number of data points (for each of the models).
BICA = (-2)(-1500) + p ln(n) = 3000 + p ln(n).
BICB = (-2)(-1465) + (p+2) ln(n) = 2930 + (p+2) ln(n).
BICA - BICB = 70 - 2 ln(n).  This difference is positive for n < e35 = 1.586 x 1015.
Thus BICB < BICA, and model B is better than model A.
Driver age should be included in the rating plan.
(b) When parameters are added to a model, the deviance improves (gets smaller). Thus using 
deviance alone would lead to overfitting. The issue is whether the deviance gets significantly 
better. Using AIC or BIC is more appropriate, as they penalize for adding new parameters.
Comment: The degrees of freedom for Model B = 
number of observations minus number of fitted parameters for model B.
The F-statistic has degrees of freedom equal that of 2 and Model B.
The given critical value is the 5% critical value for 2 and 50 degrees of freedom.
According to the CAS Examiner’s report, for part b common mistakes included: “Giving some of 
the limitations of deviance such as needing to have the same underlying dataset with the same 
distribution. This limitation is not restricted to deviance alone.” 
Section 6.1.3 of Generalized Linear Models for Insurance Rating says with respect to either 
scaled or unscaled deviance:
“Firstly, when comparing two models using log-likelihood or deviance, the comparison
is valid only if the datasets used to fit the two models are exactly identical.  ... 
For any comparisons of models that use deviance, in addition to the caveat above, it is also 
necessary that the assumed distribution must be identical as well. This restriction arises from 
deviance being based on the amount by which log-likelihood deviates from the perfect 
log-likelihood; changing any assumptions other than the coefficients would alter the value of the 
perfect log-likelihood as well the model log-likelihood, muddying the comparison.” 
However, the question asked why the deviance statistic alone should not be used to assess 
model fit. As seen in the solution to part (a), deviance together with the difference in number of 
parameters and the estimated dispersion parameter can be used to assess model fit.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 584
 



3.250. (a) As per Section 2.6 of Generalized Linear Models for Insurance Rating:
g(µi) = β0 + β1xi1 + β2xi2 + ...+ βpxip + offset. 

Thus the offset for Policy 1 is: ln( 0.013
1 - 0.013

) = -4.330.

The offset for Policy 2 is: ln( 0.203
1 - 0.203

) = -1.368.

The offset for Policy 3 is: ln( 0.025
1 - 0.025

) = -3.664.

(b) In each case we add the offset to the linear component from the insurance score.
For Policy 1: 1.250 + (-0.020)(78) - 4.330 = -4.640.
Probability of a claim is: exp[-4.640]

1 + exp[-4.640]
 = 0.96%.

For Policy 2: 1.250 + (-0.020)(92) - 1.368 = -1.958.

Probability of a claim is: exp[-1.958]
1 + exp[-1.958]

 = 12.37%.

For Policy 3: 1.250 + (-0.020)(35) - 3.664 = -3.114.

Probability of a claim is: exp[-3.114]
1 + exp[-3.114]

 = 4.25%.

(c) The logit function is: ln( x
1 - x

 ), for 0 < x < 1.

The logit function has range from -∞ to ∞.

The logistic function is: ex

1 + ex , for  -∞ < x < ∞.

The logistic function has range from 0 to 1.
(d) Since the range of the logistic function is 0 to 1, using its inverse the logit as a link function 
guarantees that the response is in the correct range for probabilities, zero to one.

3.251.  Based on the first graph, Model 1 does a very good job of matching the training data.
However, based on the second graph, Model 1 does a very poor job of matching the test data, 
particularly for the high deciles. Model 1 is overfit; the model picks up too much of the random 
fluctuation (noise) in the training data.
Based on the first graph, Model 2 does a poor job of matching the training data.
Based on the second graph, Model 2 also does a poor job of matching the test data, although 
not as poor of a job as Model 1. 
Model 2 is probably underfit; the model does not pick up enough of the signal in the training 
data.
Model 2 is monotone increasing, which is good. In the second graph, Model 1 is not monotone 
increasing; there are reversals, which is bad.
Model 1 has a larger vertical distance between the first and last deciles than does Model 2;
Model 1 has more “lift” than Model 2. All else being equal, larger lift is better, indicating that the 
model is able to maximally distinguish the best and worst risks.
Comment: According to the CAS Examiner’s “recommendation of one model over the other was 
not required.” I would not recommend using either model.
See Section 7.2.1 of Generalized Linear Models for Insurance Rating.
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3.252. (a) Sort the data based on the loss ratio predicted by the given model.

Obser.
Actual 
Loss
Cost

Actual
Loss
Ratio

Model A
Loss 
Cost

Model A
Loss
Ratio

Model B
Loss 
Cost

Model B
Loss 
Ratio

Earned
Premium

1 1,500 83.3% 825 45.8% 900 50.0% 1,800

2 675 46.6% 765 52.8% 800 55.2% 1,450

3 0 0.0% 615 25.9% 350 14.7% 2,375

4 2,250 85.7% 900 34.3% 3,000 114.3% 2,625

5 5,000 102.6% 1,050 21.5% 3,700 75.9% 4,875
For Model A, the order of predicted loss ratios is: 5, 3, 4, 1, 2.
The corresponding actual loss ratios are: 102.6%, 0%, 85.7%, 83.3%, 46.6%.

For Model B, the order of predicted loss ratios is: 3, 1, 2, 5, 4.
The corresponding actual loss ratios are: 0%, 83.3%, 46.6%, 102.6%, 85.7%.
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(b) A loss ratio chart tells one whether a proposed model is outperforming the current rating plan 
by identifying differences in risks, but not whether the proposed model’s predictions are 
accurate. The loss ratio chart compares a proposed plan to the current plan, rather than directly 
comparing two proposed plans to each other as in a double lift plot.
Simple quintile plots use loss costs (pure premiums) rather than loss ratios, which make them 
somewhat harder to understand and explain than loss ratio plots. Unlike double lift charts, 
simple quantile plots of two models would have graphs that are on separate charts and we can 
only compare the models by looking at two charts.

Double Lift Plots are sorted based on the ratio = Model A Predicted Loss Cost
Model B Predicted Loss Cost

; this is unintuitive 

and harder to explain (to non-actuaries.) Double Lift Plots compare where model A disagrees 

with model B most, since they are sorted based on the ratio Model A Predicted Loss Cost
Model B Predicted Loss Cost

, so 

Double Lift Plots can be harder to interpret. Double Lift Plots do not provide information about 
actual loss dollars. Double lift plots can only be used to compare two models; for the other plots 
we can create one plot for each of several models in order to compare among these models.
(c) The loss ratio plots should be monotonically increasing. Neither loss ratio plot is good, but 
Model A is worse than Model B.
In the simple quintile plots: Model B does a better job at predictive accuracy, both plots are 
monotonically increasing, and Model B has a much greater vertical distance between the actuals 
in the first and last quantiles (which is good). Thus based on these simple quintile plots, Model B 
is preferred to Model A.
In the double lift plot: Model B more closely matches the actual than Model A does, particularly 
for the first and last quintiles.
In all three cases, the plot indicates that one prefers Model B to Model A.
Comment: One would apply these plots to a much larger set of data than the five observations 
shown in the question; normally one would not draw any conclusions based on such a small 
amount of data.  
To create a loss ratio chart:
1. Sort the dataset based on the model prediction, in other words modeled loss ratios.
2. Group the data into quantiles with equal volumes of exposures.
3. Within each group, calculate the actual loss ratio.
Nevertheless, in part (a) the CAS also allowed plots where the data was sorted by modeled loss 
costs rather than modeled loss ratios. In that case, the plot will be the same for both
models, since they rank the observations in the same order: 3, 2, 1, 4, 5. 
The premium used to produce a Loss Ratio Plot should be at present rates, reflecting the 
current model.
“In a double lift chart, the first quantile contains those risks which Model A thinks are best 
relative to Model B. In other words, the first and last quantiles contain those risks on which 
Models A and B disagree the most (in percentage terms).”
Part (b) is not fully discussed in the syllabus reading. “The advantage of loss ratio charts over 
quantile plots and double lift charts is that they are simple to understand and explain. Loss ratios 
are the most commonly-used metric in determining insurance profitability, so all stakeholders 
should be able to understand these plots.”
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3.253. (a) For the logit link function, βx = ln( µ
1 - µ

) ⇔ μ = exp[βx]
1 + exp[βx]

. The logit link function is 

appropriate, since it maps the real line into the interval [0, 1]; probabilities are between 0 and 1.
(b) sensitivity = (true positives) / (all positives) = 72 / (72 + 162) = 30.8%.
specificity = (true negatives) / (all negatives) = 1203 / (1203 + 63) = 95.0%.
(c) The 25% threshold corresponds to the point: (1 - 0.950, 0.308).  The ROC curve:

For a threshold of 100% the model always predicts no; there are no false negatives and thus 
1 - specificity is zero. For a threshold of 100% the model never predicts yes; there are no true 
positives and thus the sensitivity is zero.
For a threshold of 0% the model never predicts no; there are no false negatives and thus 
1 - specificity is one. For a threshold of 0% the model always predicts yes; the true positives are 
equal to all positives and thus the sensitivity is one. 
A model with with no predictive power would follow the comparison line (line of equality).
A perfect model would be at (0, 1) in the upper lefthand corner; sensitivity = 1 and specificity = 1.
(d) The larger the average severity, the more worthwhile it is for the insurer to spend money to 
investigate cases of possible fraud. If claims are more severe, then the insurer will be more 
concerned about false negatives (cases where there is fraud but the modeled probability of 
fraud is below the threshold), than it would be about false positives (cases where there is not 
fraud but the modeled probability of fraud is above the threshold). 
Therefore, the more severe the claims, the lower the threshold that should be selected.
Comment: The probit link function and the complementary log-log link function would also work 
in part (a). See An Introduction to Generalized Linear Models by Dobson and Barnett, not on the 
syllabus of this exam.

2023-CAS8!    ! §3 Generalized Linear Models,  ! HCM 5/20/23,    ! Page 588
 



3.254. (a) exp[-8.4607 + 0.2714 + 0.7228 + 0.4311 ln[200,000] - 0.0960 ln[200,000]]
exp[-8.4607 + 0.2714 + 0.4311 ln[200,000]]

! = exp[0.7228 - 0.0960 ln[200,000] ] = 0.6383.
(b) In order to center AOI, we will divide the AOI by the base AOI of 200,000 prior to logging and 
including it in the model. The two forms of the model produce the same results.
For example, for Occupancy class 1, non-sprinklered property, with AOI = 200,000, the given 
model has: exp[-8.4607 + 0.4311 ln[200,000] ].
With intercept β0, the revised model would have for this same risk: 
exp[β0 + 0.4311 ln[200,000/200,000] ] = exp[β0].
⇒ exp[-8.4607 + 0.4311 ln[200,000] ] = exp[β0].

⇒ β0 = -8.4607 + 0.4311 ln[200,000] = -3.1987.

(c) 1. If all continuous variables are divided by their base values prior to being logged and 
included in the model. then the intercept term after exponentiating yields the indicated frequency 
at the base case when all variables are at their base levels. This is both more intuitive and 
easier to interpret.
2. When terms are not centered, you can have unintuitive results. In the given example, the 
sprinkler coefficient is positive which can appear to indicate a higher frequency for sprinklered
buildings than for non-sprinklered buildings. (However, when taking into account the interaction 
term, this is not true for values of log(AOI) for insured buildings.) This would not happen if AOI 
had been centered at its base level; the coefficients are more intuitive to understand when 
variables are centered.
3. With the AOI predictor in this form, the sprinklered coefficient has a more natural 
interpretation: it is the (log) sprinklered relativity for a risk with the base AOI.
Comment: See Section 5.6.2 of Generalized Linear Models for Insurance Rating.
The calculated ratio in part (a) does not depend on the occupancy class.
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