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These are slides that would be presented 
at a seminar. 

While these presentations are self-contained, 
the page numbers and question numbers refer to 
my study guide, sold separately.

The presentations are in the same order as the 
sections of my study guide. 
Use the bookmarks in the Navigation Panel in 
order to help you find what you want.

Going through them all, 
pausing to do the problems, 
I estimate would take about 60 hours.
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My solutions. ⇔  Model solutions.

See actual candidate responses in the solutions to 
past exam questions posted by the CAS. 

See the examples of graded papers posted by 
the CAS.  
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I have included no questions from 2011 or later 
exams 8, so that you can use these as practice 
exams. In some cases, I have written similar 
questions and instead included those in the slides.

No multiple choice questions on your exam.

If this is you first exam with essay questions, 
be sure to spend extra time looking at the 
examples of CAS graded papers.

You can abbreviate, use lists, leave out words, 
show only one of a series of calculations, etc.
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Write enough so the grader can easily tell that 
you know the answer.
Writing too much wastes valuable time.
Writing too little loses points.
Aim for somewhere in the middle.
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Look at the points for a question.
The more points, 
the more detailed explanation they expect.

Read the article on the CAS Webpage under 
Admissions: 
“The Importance of Adverbs on Exams”

Briefly Define
Discuss
Fully Discuss

Do some past exam problems, 
and have another student grade your paper. 
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At the beginning of my study guide is a grid of 
where the past exam questions have been.
This may help you to direct your study efforts.
More recent exams are more closely correlated 
with what will be on your exam.

You should concentrate a little more on what has 
been asked recently, but you still want to study the 
whole syllabus. 
Just because something has not been asked for a 
few years does not mean it won’t be asked on 
your exam.

The CAS will no longer be releasing past 
exams.
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Make sure to study with the materials that will be 
attached to your exam, up to date version:
National Council on Compensation Insurance, 
Experience Rating Plan Manual for Workers 
Compensation and Employers Liability Insurance 
(The NCCI plan is being updated for the 2022 
exam sitting, but the update is not available at the 
time of my writing.)
Insurance Services Office, Inc., 
Commercial General Liability Experience and 
Schedule Rating Plan. 
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Exam 8 will be given via 
computer based testing.

Be sure to practice with the Excel-like spreadsheet 
you will be using.  
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Some overlap with the 
CAS Basic Ratemaking Exam.

It may help to briefly review some of your notes on 
that exam about experience rating, retrospective 
rating, and large deductible policies.

Everything you need to know about these subjects 
for this exam should be in the relevant sections of 
my study guide.
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Whatever study methods worked for you on earlier 
exams will probably work here.

Be flexible, you may have to tweak something 
here and there in studying for this exam.

Emphasize really understanding the material.
Do not emphasize shortcuts.
Know how to do calculations using important 
formulas.
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Don’t do all the problems from a given reading all 
at once. 
Read the paper and the section in my study guide, 
and then do some problems.
Come back and do a few more problems in a few 
weeks.
Repeat.
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Bloom's Taxonomy

There is no firm dividing line between levels.
The CAS, particularly on the Fellowship Exams,
has been testing at the higher levels. 
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Integrative Questions (IQs) will differ from a 
typical exam question in three significant ways.
1. An IQ will be worth more points. 
  One IQ could be worth 10-15% of the total exam.
2. Each IQ will require candidates to draw from 
  multiple syllabus learning objectives
  in order to answer the question.
3. IQs will test at a higher average Bloom’s 
  Taxonomy level than a standard exam question.

The 2017 exam had one Integrative Question, 
while the 2018 and 2019 exams each had two 
Integrative Questions. 
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Section 3
Generalized Linear Models

by Mark Goldburd, Anand Khare, and Dan Tevet
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Generalized Linear Models are widely used by 
actuaries in ratemaking, loss reserving, etc.

GLMs can be thought of as a generalization of 
multiple linear regressions.
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However, the distribution of random errors 
need not be Normal.
Common distributions for the errors are:
Normal, Poisson, Gamma, Binomial, 
Negative Binomial, and Inverse Gaussian.

Also there is a link function that connects 
the linear combination of variables and 
the thing to be modeled.
Common link functions are: identity, inverse, 
logarithmic, logit, and inverse square.
In a linear model, the link function is equal to 
the identity function.
In a multiplicative model, 
the link function is logarithmic; 
this is analogous to an Exponential regression.
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Generalized Linear Models are fit 
via maximum Iikelihood.
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Types of Variables: 
Variables can be continuous: size of loss, etc.

Variables can be discrete: number of children, etc.

Variables can be categorical; 
there are a discrete number of categories.
The different possible values that a categorical 
variable can take on are called its levels.
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In the case of nominal variables, 
the categories do not have a natural order. 
For example, type of vehicle: 
sedan, SUV, truck, van.

Sometimes however, the categories have a natural 
order; such variables are called ordinal. 
For example injuries may be categorized as: 
minor, serious, catastrophic, and fatal. 
This also occurs when a continuous variable 
is grouped into categories.
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Advantages of Multiplicative Rating Structures:
1. A multiplicative plan guarantees 
! positive premium.
2. A multiplicative model has more 
! intuitive appeal. 
“For these and other reasons, log link models, 
which produce multiplicative structures, 
are usually the most natural model 
for insurance risk.”
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Common Link Functions:

g(μ) = ∑βixi. � μ = g-1(∑βixi).

xi are the predictor or explanatory variables. 

βi are the coefficients, which are to be fit.

βx = ∑βixi, is the linear predictor.

g is the link function, 
whose form needs to be specified.
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g(µ) = βx. ⇔ µ = g-1(βx).

The link function must satisfy the condition that 
it be differentiable and monotonic. 
Common link functions to use include: 

Identity g(µ) = µ g-1(y) = y µ = βx
Log g(µ) = ln(µ) g-1(y) = ey µ = eβx

Logit g(µ) = ln[µ/(1 - µ)]  g-1(y) = ey
ey + 1  µ = eβx

eβx + 1
Reciprocal g(µ) = 1/µ g-1(y) = 1/y  µ = 1 / (βx) 
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Let p be the probability of policy renewal. 
Then 0 < p < 1.
Thus, 0 < p / (1 - p) < ∞.
Applying the logit link function, 
-∞ < ln[p / (1 - p)] < ∞.
So we have converted the domain from 0 to 1 
to a range of minus infinity to infinity.

The inverse of the logit link function, ey

ey + 1
, 

converts the interval from minus infinity to infinity 
to the interval from zero to one, 
which would be appropriate for probabilities. 
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3.85a. (0.75 point) An actuary has historical information 
relating to personal loan default rates. 
A logistic model (GLM with a logit link function) was 
used to estimate the probability of default for a given 
customer. 
The two variables determined to be significant were 
the size of loan in thousands of dollars and 
the credit score of the customer. 
β0 corresponds to the intercept term, 
β1 corresponds to size of loan, and 
and β2 corresponds to credit score
The parameter estimates were determined to be as 
follows:  β0 = 9.5! ! β1 = 0.01! ! β2 = -0.02 
Calculate the estimated default rate for a customer who 
has credit score of 670 
and took out a loan for $180,000. 
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3.85a.  9.5 + (0.01)(180) + (-0.02)(670) = -2.1.
Using the inverse of the logit link function, 
the probability of default is: 

exp(-2.1)
1 + exp(-2.1)

 = 10.9%.

Comment: Similar to 8, 11/12, Q.4a.  
Not intended as a realistic model.
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Page 221
The assumptions of a Generalized Linear Model: 
1. Random component: Each component of Y 
! is independent and is from one of 
! the exponential family of distributions. 
2. Systematic component: The p covariates are 
! combined to give the linear predictor η: 
! ! η = X β.
3. Link function: The relationship between the 
! random and systematic components is 
! specified via a link function, g, 
! that is differentiable and monotonic 
! such that: 
! ! E[Y] = μ = g-1(η). ⇔ η = g(μ).
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Linear Exponential Families include:
Bernoulli, Binomial (m fixed), Poisson, 
Geometric, Negative Binomial (r fixed),
Exponential, Gamma (α fixed), 
Normal (σ fixed), 
Inverse Gaussian (θ fixed),
and the Tweedie Distribution. 
Confusingly, when working on GLMs, 
“Exponential Family” means 
“Linear Exponential Family.”
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Exponential Families have two parameters, 
µ the mean, and φ the dispersion parameter.

φ is related to the variance. 
In a GLM, φ is fixed across the observations and is 
treated as a nuisance parameter, in the same way 
that σ is treated in multiple regression.

Var[Y] = φ V(μ), 
where the form of V(µ) depends on 
which exponential family we have.
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For the following members of the exponential 
family of distributions, where μ is their mean, 
their variance is proportional to μp: 

� 

• Normal distribution, p = 0.

� 

• Poisson distribution, p = 1.

� 

• Gamma distribution, p = 2.

� 

• Tweedie distribution, 1 < p < 2. 

� 

• Inverse Gaussian distribution, p = 3. 
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Distribution µ φ V(µ)
Normal µ σ2 1
Poisson λ 1 µ
Gamma αθ 1/α µ2

Inverse Gaussian µ 1/θ µ3
Negative Binomial β/κ 1 µ(1 + κµ)

Binomial mq 1 µ (1 - µ/m)
Tweedie µp
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3.39. (2 points) 
You are constructing a Generalized Linear Model. 
(a) (0.5 point) If the model is additive, 
! what link function would you use?
(b) (0.5 point) If the model is multiplicative, 
! what link function would you use?
(c) (0.5 point) If the variance is proportional to the 
! mean, what distribution would you use?
(d) (0.5 point) If the standard deviation is 
! proportional to the mean, 
! what distribution would you use?
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3.39.
a) Identity link function.
b) Log link function.
c) Poisson Distribution.
d) For the variance proportional to 
the square of the mean, 
use the Gamma Distribution.
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3.64. (1.5 points) A GLM is used to model claim size. 
You are given the following information about the GLM: 

� 

• Claim size follows an Inverse Gaussian distribution. 

� 

• Log is the selected link function. 

� 

• The dispersion parameter is estimated to be 0.00510. 

� 

• Territory and gender are used in the model.

� 

• Selected Model Output: 
! Variable! ! ! β̂  
! Intercept ! ! ! 8.03 
! Territory D !! ! 0.18 
! Gender - Male ! 0.22 
Calculate the standard deviation of the predicted claim 
size for a male in Territory D. 
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3.64.  Estimated mean severity for a male in 
Territory D is: exp[8.03 + 0.18 + 0.22] = 4583.
For the Inverse Gaussian Distribution, 
Var[Y] = φ µ3 = (0.00510) ( 45833) = 490,930,199.

StdDev[Y] = 490,930,199  = 22,157.
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Page 237!! Design Matrix:
As with multiple regression, it is common in GLMs 
to work with a design matrix.
Each row of the design matrix corresponds to 
one observation in the data. 
 

Each column of the design matrix corresponds to 
a covariate in the model.
If there is an intercept or constant term in 
the model, then the first column refers to it.
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A one dimensional example, with one covariate 
plus an intercept. Y = β0 + β1X.
Three observations: (1, 1), (2, 2), (3, 9).

Then the design matrix is: 
1 1
1 2
1 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

Since the intercept applies to each observation, 
the first column is all ones.
The second column contains the observed values 
of the only covariate X.
Note that the design matrix depends on the 
observations and the definitions of the covariates.
The design matrix does not depend on the link 
function or the distributional form of the errors.

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 23
 



The response vector would contain the observed 

values of Y: 
1
2
9

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

The vector of parameters is: 
β0
β1

⎛

⎝
⎜

⎞

⎠
⎟ .

This model, which used the identity link function, 
can be rewritten as: E[Y] = X β,
where X is the design matrix 
and β is the vector of parameters. 

In general, with a link function g, 
a GLM can be written as: E[Y] = g-1[X β].
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With more covariates, 
things get a little more complicated. 
There is not a unique way to define 
the covariates. 
The important thing is to have the design matrix 
be consistent with the chosen definitions of
the covariates.
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A two dimensional model:  
!

Urban Rural
Male 800 500
Female 400 200

Let male/rural be the base level.
Then the constant, β0, 
would apply to all observations.
Let X1 = 1 if female and 0 if male.
Let X2 = 1 if urban and 0 if rural.

Then with link function g, the GLM is: 
g(E[Y]) = β0 + β1X1 + β2X2.
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Then the design matrix is: 

!

Male/Urban
Male/Rural

Female/Urban
Female/Rural

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ⇔ 

1 0 1
1 0 0
1 1 1
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 

The first column of ones corresponds to the 
constant term which applies to all observations.
The first row of the design matrix corresponds to 
male/urban: X1 = 0, X2 = 1.

The second row corresponds to male/rural: 
X1 = 0, X2 = 0.

The third row corresponds to female/urban: 
X1 = 1, X2 = 1.

The last row corresponds to female/rural: 
X1 = 1, X2 = 0.
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Response vector contains 
the observed values of Y, 
in the same order as the rows of the design matrix:

! !

Male/Urban
Male/Rural

Female/Urban
Female/Rural

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ⇔ 

800
500
400
200

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

The vector of parameters is: 
β1
β2
β3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

This definition of covariates is not unique. 
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An Example of Adding Dimensions:
Assume we have a one-dimensional model with 
two territories: Urban and Rural.
There are several ways to set up this model, but 
assume for example:
Let Urban be the base level, β0 is the intercept, 
X1 = 1 if Rural.

Let us now add another dimension, gender: 
Male or Female.
We can either let Female/Urban be the base level 
and X2 = 1 if Male, or let Male/Urban be the base 
level and X2 = 1 if Female.

In either case, we add only one more variable to 
the model we had for one dimension.
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We could now add another dimension such as 
age: Young, Senior, Other. 
We would add two more variables to include age. 
Age has three levels, and in order to add it to our 
model we need to add 3 - 1 = 2 variables.
If the model has a base level and 
corresponding constant term, 
then each categorical variable introduces 
a number of covariates equal to 
the number of its levels minus one. 
In this example, the number of covariates is: 
(constant term) + (2-1) + (2-1) + (3-1) = 5. 
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In practical applications, 
it is important to choose the base level of each 
category to be one with lots of data. 
If the chosen base level has little data, 
then the standard errors of the coefficients 
will be larger than if one had chosen a base level 
with lots of data.
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3.98. (3.5 points) A personal auto class system has three 
class dimensions:
● Sex: Male vs female
● Age: Youthful vs adult vs retired
● Territory: Urban vs suburban vs rural
An actuary sets rate relativities from the experience of 
20,000 cars.
● Urban is the base level in the territory dimension.
● Adult is the base level in the age dimension.
● Male is the base level in the sex dimension.
a. (0.5 points) How many elements does the vector of 
! covariates have in a multiplicative model?
b. (0.5 points) How many elements does the vector of 
! covariates have in an additive model?
c. (1 point) Specify each element of the vector of 
! parameters, with β0 ⇔ the base class.
d. (0.5 points) How many columns does the design matrix 
! have?
e. (0.5 points) How many rows does the design matrix have 
! if each record is analyzed separately?
f. (0.5 points) For grouped data, how many rows does the 
! design matrix have?
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3.98. a. We would have one parameter for gender, 
two parameters for age, and two parameters for 
territory. In addition we would have a parameter 
related to the base level. 
A total of 6 parameters.
6 = (2-1) + (3-1) + (3-1) + 1.
      Sex     Age!   Terr.!   Base!

b. A total of 6 parameters. The link function does 
not affect the number of parameters.
c. β0 is the intercept term applies to all insureds.
β1 corresponds to Female.
β2 corresponds to Youthful.
β3 corresponds to Retired.
β4 corresponds to Suburban.
β5 corresponds to Rural.
(Many other possible orders for the parameters.)
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d. With 6 parameters, 
the design matrix has 6 columns.
e. With 20,000 cars, 
the design matrix has 20,000 rows.
f. The number combinations are: (2)(3)(3) = 18.  
Thus the design matrix has 18 rows. 
(I have assumed that none of these cells is empty. 
I have assumed that there are no records with 
missing classification information.) 
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Page 243!! Overdispersion: 

Var[Yi] = φ E[Yi].  

Since for the Poisson φ = 1, 
the variance is equal the mean.
When the variance is greater than the mean, 
one could use a Negative Binomial Distribution, 
which has a variance greater than its mean. 

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 35
 



We can instead use an overdispersed Poisson 
with φ > 1.
Var[Yi] = φ E[Yi].  
For φ > 1, variance is greater than the mean.
While this does not correspond to the likelihood 
of any exponential family, 
otherwise the GLM mathematics works. 
Using an overdispersed Poisson (ODP), 
we get the same estimated betas as for 
the usual Poisson regression.  
However, the standard errors of all of 
the estimated parameters are multiplied by φ .  
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3.11. (1.5. points) A GLM has been fit using 
a Poisson Distribution with β̂1 = 0.02085 
with standard error 0.00120.
Using instead an overdispersed Poisson 
the estimate of φ is 7.9435.
For this second model, determine a 95% 
confidence interval for β1.
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3.11.  The fitted parameter(s) are the same, while 
the standard errors are multiplied by 7.9435 .

The standard error of β̂1 is: 
0.00120 7.9435  = 0.00338.

95% confidence interval for β1: 
0.02085 ± (1.96) (0.00338) = 0.02085 ± 0.00662.

Comment: One could instead use: 
0.02085 ± (2) (0.00338) = 0.02085 ± 0.00676.
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Page 246
Offsets, Poisson Model with Log Link Function: 
With the log link function: λi = exp[ηi].
We assume that Yi is Poisson, with mean ni λi, 
where ni is the number of exposures for 
observation i.
µi = ni λi = ni exp[ηi]. ⇔ ln[μi] = ln[ni] + ηi.

Thus we have rewritten the usual equation 
relating the mean to the linear predictor, η = Xβ, 
with an additional term, 
ln[ni] which is called the offset. 

Note that the offset involves a vector of known 
amounts, the number of exposures 
corresponding to each observation.
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Offsets, When Updating Only Part of Rating Plan: 
Updating other parts of the rating algorithm, 
but leaving the deductible credits the same.  
The current deductibles and credits are a follows:
! $500! ! Base
! $1000!! 8% credit
! $2500!! 14% credit
A GLM for pure premium using a log link function:
! µ = exp[Xβ] fD,
where Xβ is the linear predictor 
(not taking into account deductible),
and fD is the appropriate deductible factor of: 
1, 0.92, or 0.86.
ln[µ] = Xβ + ln[fD] = Xβ + offset.

Here the offset is: ln[1 - deductible credit].
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The current deductibles and credits are a follows:
! $500! ! Base
! $1000!! 8% credit
! $2500!! 14% credit
If an observation is from a policy with a $500 
deductible, then the offset is ln[1] = 0.
If an observation is from a policy with a $1000 
deductible, then the offset is ln[1 - 0.08] = -0.0834.
If an observation is from a policy with a $2500 
deductible, then the offset is ln[1 - 0.14] = -0.1508.

An offset factor is a vector of known amounts 
which adjusts for known effects 
not otherwise included in the GLM.
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Offsets, General Mathematics:
The offset is added to the linear component: 
g(µi) = β0 + β1 xi1 + β2 xi2 + ...+ βp xip + offset.
Offsets can be used with other link functions.  
For example, an actuary is planning to add a 
predictor to a model that estimates the probability 
of a policy having a claim. The actuary has 
decided to offset all of the current model variables 
before fitting the new variable. Given the following:
● The current model is a logit link binomial GLM.
● The current fitted probability without the new 
! variable is 5% for an individual. 

The logit link function is defined as g(µ) = In ( µ
1 - µ

)

Thus the offset for this individual is: 
ln( 5%

1 - 5%
) = -2.944.

See 8, 11/18, Q.7.
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3.163. (1 point) An actuary is modeling pure 
premiums, using a GLM with a log link function.
Deductible relativities have been determined 
separately, and their effect will be included in the 
GLM via an offset. 
The fitted GLM uses two predictors x1 and x2; 
β̂0  = 6, β̂1 = 0.1, and β̂2  = -0.2.

Calculate the fitted pure premium for a policy with 
a deductible relativity of 0.8, x1 = 13 and x2 = 3.
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3.163.  The offset is: ln(0.8) = -0.223. 
The linear component is: 
6 + (0.1)(13) + (-0.2)(3) = 6.7.
Modeled pure premium = exp[6.7 - 0.223] = 650.

Alternately, the modeled pure premium is: 
(0.8) exp[6 + (0.1)(13) + (-0.2)(3)] = 650.
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Page 249!  Prior Weights: 
When a given observation is based on more data 
we give it more weight.
When modeling severity, 
let the weights ωi be the number of claims. 

When modeling claim frequency or pure 
premiums, let the weights be exposures.
The assumed variance for observation i 
is inversely proportional to the weight: !
Var[Yi] = φ V[μi] / ωi.
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The Tweedie Distribution is an exponential family 
commonly used for modeling pure premiums.
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The Tweedie Distribution has mean µ and its 
variance is proportional to μp, for 1 < p < 2.
There is a point mass of probability at zero 
corresponding to no loss.   
A graph of the density of a Tweedie Distribution, 
including a point mass of probability 20.58% at 0:
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The Tweedie Distribution is mathematically 
a special case of 
a Compound Poisson Distribution:
a Poisson frequency with a Gamma severity.
 

As alpha, the shape parameter of the Gamma, 
approaches infinity, p approaches 1, 
and the Tweedie approaches a Poisson. 
 

As alpha approaches zero, p approaches 2, 
and the Tweedie approaches a Gamma. 
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Standard Errors and 
Confidence Intervals for Fitted Parameters:
A standard error is the standard deviation of 
an estimated coefficient.
95% confidence interval for βi is: 
β̂i ± 1.96 (standard error of βi).
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One can perform hypothesis tests such as:
β1 = 0 versus β1 ≠ 0.

p-value = Prob[test statistic takes on a value equal 
to its calculated value or a value less in agreement 
with H0 (in the direction of H1 ) | H0 ].

“A common statistical rule of thumb is to reject the 
null hypothesis where the p-value is 0.05 or lower. 
However, while this value may seem small, note 
that it allows for a 1-in-20 chance of a variable 
being accepted as significant when it is not. 
Since in a typical insurance modeling project we 
are testing many variables, this threshold may be 
too high to protect against the possibility of 
spurious effects making it into the model.”
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Log Link Function and Continuous Variables:
Taking the log of continuous variables provides 
more variety of behaviors. 

� 

⇒ One is more likely to find one 
that fits your data.  

Let x1 = Amount of Insurance / $100,000.
µ = exp[β0 + β1ln[x1] + β2x2] 
   = exp[β0 + β2x2] x1β1.

For example, if β1 = 0.5, then 
the multiplicative relativity is: (AOI / 100,000)0.5. 
If instead β1 = 1.3, then 
the multiplicative relativity is: (AOI / 100,000)1.3. 
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These are significantly different behaviors: 

� 

⇒ The authors recommend that 
when using the log link function in a GLM, 
you log your continuous predictor variables.
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3.35. (1 point) Use the following information for the following:
● Data on commercial building insurance claims frequency.
● A Poisson GLM was fit using the log link function.
● A categorical predictor used is building occupancy class, 
! coded 1 through 4, with 1 being the base class.
● A binary predictor used is sprinklered status, 
! with 1 being yes and 0 being no.
● A continuous predictor used is: 
! ln[amount of insurance / 200,000] = ln[AOI / 200,000].
● The fitted intercept is β0 = -3.8.
● Fitted parameters for building occupancy classes 2, 3, and 4 are: 
! β1 = 0.3, β2 = 0.5, β3 = 0.1.
● The fitted parameter for sprinklers is: β4 = -0.5.
● The fitted parameter for ln[AOI / 200,000] is: β5 = 0.4.
● An interaction term between sprinkler status and 
! ln[AOI / 200,000] is included in the model;
! the fitted parameter is: β6 = -0.1.
Determine the fitted frequency for a $250,000 building 
in occupancy class 2 with sprinklers.
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3.35.  
exp[-3.8 + 0.3 - 0.5 + (0.4) ln[2.5/2] - (0.1) ln[2.5/2] ] 
= 2.0%.
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P. 265   The syllabus reading has an example of 
a commercial building claims frequency model.
When ln[AOI] was used the output was: 
!

It appears that having sprinklers would lead to 
a higher claims frequency, 
which does not make intuitive sense. 
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However, we need to also take into account 
the interaction term.
For example, for AOI = 50,000, 
having sprinklers adds to the linear predictor:
0.7447 + (-0.1032)ln[50,000] = -0.3719.  
Thus, sprinklered has a lower predicted frequency.
This addition to the linear predictor 
would be zero for:
0 = 07447 + (-0.1032) ln[AOI]. ⇒ AOI = 1361. 

In this example, almost all, if not all 
insured buildings have amounts of insurance 
larger than 1361.  
Thus for actual amounts of insurance 
for insured buildings, 
having sprinklers reduces the predicted frequency. 

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 56
 



When instead ln[AOI/200,000] was used 
the output was:

Most of the fitted coefficients stay the same. 
However, both the intercept and 
the coefficient of sprinklered have changed. 
Originally the sprinklered coefficient was positive 
and now it is negative. 
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The authors recommend that when using 
the log link function in a GLM, 
prior to logging 
a continuous predictor variables 
you divide by the base level 
of that continuous variable; 
in other words, 
center your continuous variables 
at their base level. 
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Centering has the following advantages:
● If all continuous variables are divided by their base 
! values prior to being logged and included 
! in the model, then the intercept term after 
! exponentiating yields the indicated frequency 
! at the base case when all variables are at their 
! base levels. This is both more intuitive 
! and easier to interpret.
● When terms are not centered, you can have 
! unintuitive results. In the given example, 
! the sprinkler coefficient is positive which 
! can appear to indicate a higher frequency 
! for sprinklered buildings than 
! for non-sprinklered buildings. 
! This would not happen if AOI had been centered at 
! its base level; the coefficients are more intuitive to 
! understand when variables are centered.
● In this example, with the AOI predictor in this form, 
! the sprinklered coefficient has a more natural 
! interpretation: it is the (log) sprinklered relativity for 
! a risk with the base AOI.
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3.182. (2.5 points) An actuary creates a generalized linear model 
(GLM) to estimate commercial property claim frequency by 
occupancy class and amount of insurance (AOI) for sprinklered and 
non-sprinklered risks. Given the following:
● Occupancy class is a categorical variable with four levels: 
! class 1, 2, 3 and 4.
● Sprinklered status is a categorical variable with two levels: 
! sprinklered and non-sprinklered.
● The natural log of AOI, In(AOI), is a continuous variable.
● The log link function is selected.
● An interaction variable is included as In(AOI) for sprinklered 
! and zero otherwise.
● The model results are as follows:

Parameter Coefficient

Intercept -8.200

Occupancy class 2 0.200

Occupancy class 3 0.300

Occupancy class 4 0.500

Sprinklered 0.700

In(AOI) 0.400

Sprinklered: Yes, In(AOI) -0.100
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a. (0.75 point) Calculate the ratio of the estimated 
! model frequency of a sprinklered property to 
! that of a non-sprinklered property !
! for AOI = 150,000 and occupancy class 3.
b. (0.5 point) Calculate the intercept term if AOI is 
! centered at the base level of 300,000.
c. (0.5 point) Calculate the coefficient of 
! sprinklered if AOI is centered 
! at the base level of 300,000.
d. (0.75 point) Briefly describe two advantages of 
! centering variables of a GLM 
! at their base levels.
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3.182. (a) 
exp[-8.2 + 0.3 + 0.7 + 0.4 ln[150,000] - 0.1 ln[150,000]]

exp[-8.2 + 0.3 + 0.4 ln[150,000] ]
! = exp[0.7 - 0.1 ln[150,000] ] = 0.6115.
(b) In order to center AOI, we will divide the AOI 
by the base AOI of 300,000 prior to logging and 
including it in the model. The two forms of the 
model produce the same results.
For example, for Occupancy class 1, 
non-sprinklered property, with AOI = 300,000, 
the given model has: exp[-8.2 + 0.4 ln[300,000] ].
With intercept β0, the revised model would have 
for this same risk: 
exp[β0 + 0.4 ln[300,000/300,000] ] = exp[β0].
⇒ exp[-8.2 + 0.4 ln[300,000] ] = exp[β0].

⇒ β0 = -8.2 + 0.4 ln[300,000] = -3.155.
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(c) For example, for Occupancy class 1, 
sprinklered property, with AOI = 300,000, 
the given model has: 
exp[-8.2 + 0.4 ln[300,000] + 0.7 - 0.1 ln[300,000] ].
With an intercept of -3.155 and coefficient for 
sprinklered of βS, the revised model would have 
for this same risk: 
exp[-3.155 + 0.4 ln[300,000/300,000] + βS 
! - 0.1 ln[300,000/300,000]] = exp[-3.155 + βS].
⇒ -8.2 + 0.4 ln[300,000] + 0.7 - 0.1 ln[300,000] 
! ! = -3.155 + βS.
⇒ βS = -0.562.

Alternately, given that β0 = -8.2 + 0.4 ln[300,000], 
we want:
0.7 - 0.1 ln[300,000] = βS. ⇒ βS = -0.561.
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(d) 1. If all continuous variables are divided by 
their base values prior to being logged and 
included in the model, then the intercept term 
after exponentiating yields 
the indicated frequency at the base case 
when all variables are at their base levels. 
This is both more intuitive and easier to interpret.
2. When terms are not centered, you can have 
unintuitive results. In the given example, the 
sprinkler coefficient is positive which can appear to 
indicate a higher frequency for sprinklered
buildings than for non-sprinklered buildings. 
This would not happen if AOI had been centered 
at its base level; the coefficients are more intuitive 
to understand when variables are centered.
3. With the AOI predictor in this form, 
the sprinklered coefficient has a more natural 
interpretation: it is the (log) sprinklered relativity for 
a risk with the base AOI.
Comment: Similar to 8, 11/19, Q.6. 
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P. 269  Correlation Among Predictors:
When the correlation between two predictor 
variables is large (in absolute value), 
the GLM will be unstable. 
The standard errors of the corresponding 
coefficients can be large and small changes in the 
data can produce large changes in the 
coefficients.
If potential problems are found, one can:
1. Remove one or more predictors from the model.
2. Use techniques that combine predictors in order 
! to reduce the dimension, such as
! Principal Component Analysis.
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“Determining accurate estimates of relativities in 
the presence of correlated rating variables is a
primary strength of GLMs versus univariate 
analyses; unlike univariate methods, the GLM will 
be able to sort out each variable’s unique effect on 
the outcome, as distinct from the effect of any 
other variable that may correlate with it, thereby 
ensuring that no information is double-counted.”
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Multicollinearity: 
Multicollinearity is a similar situation which also 
leads to potential problems. 
Multicollinearity occurs when two or more 
predictors in a model are strongly predictive of 
another one of the predicator variables. 
A high degree of multicollinearity, 
usually leads to unreliable estimates of 
the  parameters. 
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A useful statistic for detecting multicollinearity 
is the variance inflation factor (VIF).
If one or more of the VIFs is large, that is an 
indication of multicollinearity.
A common statistical rule of thumb is that 
a VIF greater than 10 is considered high, 
indicating possible problems 
from multicollinearity.
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3.135. (1 point) A GLM has been fit in order to 
predict blood pressure of individuals.

Variable Coefficient VIF
Constant -12.87

Age 0.7033 1.76
Weight 0.9699 10.42

Body Surface Area 3.780 6.33
Duration of Hypertension 0.0684 1.24

Basal Pulse -0.0845 4.41
Stress Index 0.00341 1.83

Briefly discuss this output.!
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3.135.  A common statistical rule of thumb is that a 
VIF greater than 10 is considered high. 
Thus, there is probably multicollinearity related to 
Weight; two or more predictors in the model are 
probably strongly predictive of Weight. 
May cause instability problems with the model.
Should be investigated further. 
It may help to either remove Weight from 
the model or to preprocess the data using 
dimensionality reduction techniques such as 
principal components analysis.
Comment: The VIF of 6.33 for Body Surface Area 
may also warrant some investigation.
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page 270!! Aliasing:
Where two predictors are perfectly correlated, 
they are said to be aliased, and the GLM will 
not have a unique solution.
When we have a categorical variable with N 
levels, the model should have N-1 parameters 
in addition to an intercept term. 
The chosen base level is associated with 
the intercept term and will not have 
a separate associated parameter. 
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Limitations of GLMs:
1. GLMs assign full credibility to the data. 
2. GLMs assume that the randomness of 
! outcomes are uncorrelated.
For example, the data set may include several 
years of data from a single policyholder, which 
appear as separate records. The outcomes of a 
single policyholder are correlated. 
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The Model-Building Process: 
• Setting of objectives and goals
• Communicating with key stakeholders
• Collecting and processing the necessary data 
! for the analysis
• Conducting exploratory data analysis
• Specifying the form of the predictive model
• Evaluating the model output
• Validating the model
• Translating the model results into a product
• Maintaining the model
• Rebuilding the model
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The data should be split into at least two 
subsets, so that the model can be tested on 
data that was not used to build it. 

Any analysis performed by an actuary is 
no better than the quality of the data 
that goes into that analysis!

Models should be periodically rebuilt in order 
to maximize their predictive accuracy,
but in the interim it may be beneficial 
to merely refresh the existing model 
using newer data.
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p. 277   Splitting the Data into Subsets: 
For modeling purposes one should split the 
data into either two or three parts. 
This can be done either at random or based on 
time, for example policy year.
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The simpler approach is to split the data into a 
training set and test (holdout) set. 
One develops the model on the training set. 
One would test performance 
on the test set of data, which was not used 
in developing the model.  
The model was developed to fit well to the training 
set. In doing so, we are concerned that the model 
may be picking up peculiarities of the training set. 
If the model does a good job of predicting for the 
test set, which was not used in developing the 
model, then it is likely to also work well at 
predicting the future. 
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Sometimes, one uses the more complicated 
approach of splitting the data in three subsets:
a training set, validation set, 
and test (holdout) set.   
One develops the model on the training set. 
Then test performance on the validation set, 
which was not used in developing the model(s). 
If any changes in the form of the model are 
indicated, one goes back and works again with 
the training set. 
Iterate until the actuary is satisfied.
Then test performance on the test set of data, 
which was not used so far. 
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In either the simpler or more complicated case, 
once a final form of the model has been 
decided upon, one should go back 
and use all of the available data to fit 
the parameters of the GLM.
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Underfitting and Overfitting:
Underfit. ⇔ Too few Parameters. ⇔ 
Does not use enough of the useful information.
  ⇔ Does not capture enough of the signal.

Overfit. ⇔ Too many Parameters. 
! ⇔ Reflects too much of the noise.

We wish to avoid both underfitting and 
overfitting a model.
Our goal in modeling is to find the right 
balance where we pick up as much of the 
signal as possible with minimal noise. 
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3.78. (1.5 points) Before embarking on a GLM 
modeling project, it is important to understand 
the correlation structure among the predictors. 
Discuss why this is important and what actions 
may be indicated.
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3.78. If two predictors are highly correlated 
(have a correlation coefficient close to plus or 
minus one) coefficients may behave erratically. 
Furthermore, the standard errors associated with 
those coefficients will be large, and small 
perturbations in the data may swing the coefficient 
estimates wildly. Such instability in a model should 
be avoided. As such it is important to look out for 
instances of high correlation prior to modeling, by 
examining two-way correlation tables. 
Where high correlation is detected, means of 
dealing with this include the following:
• For any group of correlated predictors, 
! remove all but one from the model. 
• Preprocess the data using dimensionality 
! reduction techniques such as 
! principal component analysis.
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Multicollinearity: A more subtle potential problem 
may exist where two or more predictors in a model 
may be strongly predictive of a third, a situation 
known as multicollinearity. The same instability 
problems as above may result. A useful statistic for 
detecting multicollinearity is the variance inflation 
factor (VIF), which can be output by most 
statistical packages. A common statistical rule of 
thumb is that a VIF greater than 10 is considered 
high. 

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 82
 



Aliasing: Where two predictors are perfectly 
correlated, they are said to be aliased, and the 
GLM will not have a unique solution.  Where they 
are nearly perfectly correlated, the model will be 
highly unstable; the fitting procedure may fail to 
converge, and even if the model run is successful 
the estimated coefficients will be nonsensical. 
Such problems can be avoided by looking out for 
and properly handling correlations among 
predictors, as discussed above.
Comment: See Section 2.9 of Goldburd, et. al.
Not necessary to say all of the above rather than 
some of the above.
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Page 284!! Selection of Model Form:  
Important decisions on the form of a GLM include:
• Choosing the target variable.
• Choosing a distribution for the target variable.
• Choosing the predictor variables.
• Whether to apply transformations 
! to the predictor variables.
• Grouping categorical variables.
• Whether to include interactions.
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Frequency/Severity versus Pure Premium:
An actuary could build two separate models: one 
for frequency and one for severity.  
Alternately the actuary could build a single model 
for pure premium. 
If there is time, an actuary could do both and 
compare the results.
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Advantages of the frequency/severity approach 
over pure premium modeling:
• Provides the actuary with more insight.
• Each of frequency and severity is 
! more stable than pure premium.  

Disadvantages of pure premium modeling versus 
the frequency/severity approach:
• Some interesting effects may go unnoticed.
• Pure premium modeling can lead to 
! underfitting or overfitting. 
• The Tweedie distribution used to model 
! pure premium contains the implicit assumption 
! that an increase in pure premiums is made up 
! of an increase in both frequency and severity.
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Implicit Assumption in the Tweedie Distribution:

For a given GLM using the Tweedie, 
φ and 1 < p < 2 are fixed. 

� 

⇒ α is fixed.

If µ increases, then it turns out that 
!  λ and θ each also increase.

� 

⇒ both mean frequency = λ, 
! and mean severity = αθ increase.
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P. 289
Choosing the Distribution for the Target Variable: 
If modeling claim frequency, the distribution is 
likely to be either Poisson or Negative Binomial. 
If modeling a binary response, then the Bernoulli 
or Binomial Distributions are used. 
If modeling claim severity, common choices for 
the distribution are Gamma and Inverse Gaussian.
If modeling pure premiums, 
the Tweedie Distribution is a common choice.
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Selection of Predictor Variables:

One would like a predictor variable to have 
a statistical significant effect 
on the target variable. 

In addition to statistical significance, 
the actuary must take into account 
practical considerations.
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P. 294!! Partial Residual Plots:
Partial Residual Plots are one way to detect 
whether to transform a predictor variable.
Concentrate on one of 
the explanatory variables Xj.

Then the partial residuals are: 
ri = (ordinary residual) g’(μi) + xij β̂ j. 

In a Partial Residual Plot, we plot the partial 
residuals versus the variable of interest.
If there seems to be curvature rather than 
linearity in the plot, that would indicate a 
departure from linearity between the 
explanatory variable of interest and g(μ), 
adjusting for the effects of the other 
independent variables.
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For a log link, g’(µ) = 1/µ, so that:
 ! ri = yi - µi

µi
 + β̂j xij. 
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A graph of the partial residuals:

The linear estimate of the GLM, -0.314x, is 
superimposed over the plot of the partial residuals. 
The points are missing the line in a systematic 
way, indicating that this model can be improved.
The model is overpredicting for risks where 
log building age is less than 2.5, 
underpredicts between 2.5 and 3.25, 
and once again overpredicts for older buildings.
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A new GLM was fit, including both 
ln[age of building] and its square.
A graph of the partial residuals: 

   
We see that adding the square of 
the logged building age improves the model.
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Binning Continuous Predictors: 
If there is nonlinearity, one possible fix for a 
continuous variable is to group it into intervals.
Grouping age of construction into ten bins:
  

!
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Disadvantages of binning continuous variables:
1. Adds parameters to the model. 
2. Continuity in the estimates is not guaranteed.
! There is no guarantee that the pattern 
! among intervals makes sense. 
3. Variation within intervals is ignored.
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Adding Polynomial Terms:

Rather than a model that uses β0 + β1 x1 + ...,
one can use β0 + β1 x1 + β2 x12 + ..., 
or β0 + β1 x1 + β2 x12 + β3 x13 + ...

The more polynomial terms that are included, 
the more flexibility, 
at the cost of greater complexity.
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Using Piecewise Linear Functions: 
Let X+ be X if X ≥ 0 and 0 if X < 0.

Then a hinge function is: 
max[0, X - c)] = (X - c)+, for some constant c.

The constant c would be called the breakpoint. 
Hinge functions can be used to create piecewise 
linear functions which can be used in GLMs.

For example, let X = ln[AOI]. 
A usual linear estimator is: β0 - 0.314 x + ...
Using instead a hinge function: 
β0 + 1.225 x - 2.269 (x - 2.75)+ + ...
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β0 + 1.225 x - 2.269 (x - 2.75)+ + ...

Here is a graph of the broken line that results from 
including the hinge function (x - 2.75)+:

  
1.5 2.0 2.5 3.0 3.5 4.0 4.5

log of AOI

2.0

2.5

3.0

For ln[AOI] < 2.75,we have slope 1.225, 
while for ln[AOI] > 2.75 we have a slope of: 
1.225 - 2.269 = -1.044.
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3.40. (1 point) For a GLM, here is a partial residual plot for 
the predictor variable X4:

20 40 60 80 100

- 40

- 20

20

Partial Residual

X4 

Briefly discuss the meaning of this plot. 
If necessary, what is a possible solution?
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3.40.  The partial residual plot is not linear; thus, 
we should do something to improve the model.
Since the slope seems to change somewhere 
around 50 or 60, we could use a hinge function: 
Min[0, X4 - 50] or Min[0, X4 - 60].
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Page 307 Natural Cubic Splines:
Another way to handle non-linear effects is to use 
Regression Splines.  An important special case 
are Natural Cubic Splines. 
One has to choose breakpoints, called knots. 
The spline will be continuous at these knots.
In between each of the knots, 
a cubic spline follows a cubic polynomial.
Below the first knot and above the last knot, 
a natural cubic spline is linear.
“As with polynomial functions, 
natural cubic splines do not lend themselves
to easy interpretation based on the model 
coefficients alone, but rather require graphical 
plotting to understand the modeled effect.”
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Some of characteristics of natural cubic splines:
● The first and second derivatives of 
! the fitted curve function are continuous 
! at the breakpoints (knots). 
● The fits at the edges of the data 
! (before the first selected breakpoint 
! and after the last) 
! are restricted to be linear.
● The use of breakpoints makes it more suitable 
! than regular polynomial functions for
! modeling more complex effect responses, 
! such as those with multiple rises and falls.
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A fitted natural cubic spline with knots at: 
8, 16, 24, and 32:
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Page 311!! Grouping Categorical Variables: 
Sometimes it is useful for modeling purposes 
to group ordinal predictor variables into 
fewer categories.   
For example, workers compensation claims are 
categorized as: medical only, temporary total, 
minor permanent partial, major permanent partial, 
permanent total, and fatal. 
For some purposes it might be useful to group 
the first three categories into nonserious and 
the last three categories into serious.
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Interactions:
If x1 and x2 are predictor variables, then we can 
include an interaction term: x1x2.
Then the model would be: 
g(µ) = β0 + β1 x1 + β2 x2 + β3 x1x2 + ....

This provides more flexibility 
at the cost of complexity. 
For example let x1 be gender and x2 be age. 
Then if we include an interaction term 
the effect of age depends on gender, 
and the effect of gender depends on age.
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P. 313!! Loglikelihood: 
The saturated model has as many parameters 
as the number of observations.
Each fitted value equals the observed value.
The saturated model has the largest possible 
likelihood, of models of a given form.
The minimal model has only one parameter, 
the intercept. 
The minimal model has the smallest possible 
likelihood, of models of a given form.
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Deviance:
The deviance is twice the difference between 
the maximum loglikelihood 
for the saturated model 
and the maximum loglikelihood 
for the model of interest. 
The form of the deviance depends on 
the distribution used in the model:
Poisson, Gamma, Inverse Gaussian, etc.
You are not responsible for them on this exam. 
The smaller the deviance, 
the better the fit of the GLM to the data.
Maximizing the loglikelihood is equivalent 
to minimizing the deviance.
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Nested Models and the F-Test: 
Assume that we have two nested models. 
Then the test statistic (asymptotically) follows 
an F-Distribution with numbers of degrees of 
freedom equal to: 
ν1 = the difference in number of parameters, 
ν2 = number of observations minus number of 
! ! fitted parameters for the smaller model.  
The test statistic is: 

 

(DS - DB) / (number of added parameters) 
 φ̂S

 

! ! ~ FdfS-dfB, dfS. 
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(DS - DB) / (number of added parameters) 
 φ̂S

 

! ! ~ FdfS-dfB, dfS. 

DS = deviance for the smaller (simpler) model. 

DB = deviance, the bigger (more complex) model.

dfS = degrees of freedom, smaller model.
 = number of observations minus 
number of fitted parameters for the simpler model.
number of added parameters = dfS - dfB.

φ̂S = estimated dispersion param., smaller model. 
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If the F-Statistic is sufficiently big, 
then reject the null hypothesis that 
the data is from the smaller model 
in favor of the alternate hypothesis 
that the data is from the bigger model. 

Exercise: A GLM using a Gamma Distribution has 
been fit for modeling expenditures upon admission 
to a hospital. There are 150 observations. 
It uses 25 variables.
It uses 4 categories of self-rated physical health: 
poor, fair, good, and very good. 
The deviance is 35.1.
An otherwise similar GLM excluding self-rated 
physical health has a deviance of 38.4.
The estimated dispersion parameter for this 
simpler model is 0.3.
Discuss how you would determine whether 
physical health is a useful variable for this model.
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The more complex model has 25 variables, and 
150 - 25 = 125 degrees of freedom.
In order to incorporate physical health, avoiding 
aliasing, we need 4 - 1 = 3 variables.
Thus the simpler model has 22 variables, 
and 150 - 22 = 128 degrees of freedom.
The difference in degrees of freedom is: 
128 - 125 = 3 = number of additional variables.

Test statistic is: DS - DB
(number of added parameters) φ̂S

 

= 38.4 - 35.1
 (3) (0.3)

 = 3.67.

We compare the test statistic to an F-distribution 
with 3 and 128 degrees of freedom.
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The null hypothesis is to use the simpler model, 
the one without physical health
The alternate hypothesis is to use the more 
complex model.
We reject the null hypothesis if the test statistic is 
sufficiently big. 
Using a computer, the p-value of this test is 1.4%. 
At a 2.5% significance level we would reject the 
simpler model in favor of the more complex model. 
At a 1% significance level we would not reject 
the simpler model.
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3.26. (2 points) A GLM using a Tweedie 
Distribution and a log link function is being used to 
model pure premiums of private passenger 
automobile property damage liability insurance. 
There are 100,000 observations.
10 parameters including an intercept were fit.
The deviance is 233,183.65, and the estimated 
dispersion parameter is 2.371.
Credit score as a categorical variable is added to 
the model, with a total of 6 categories.
The deviance for this more complex model is 
233,134.37.
Discuss how you would determine whether credit 
score should be added to this model.
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3.26.  Adding credit score adds 6 - 1 = 5 
parameters to the model.

F = 
 

DS - DB
(number of added parameters) φ̂S

 = 

(233,183.65 - 233,134.37) / 5
 2.371

 = 4.157.

The number of degrees of freedom 
in the numerator is 5.
The number of degrees of freedom 
in the denominator is: 
number of observations minus 
the number of parameters in the smaller model 
= 100,000 - 10 = 99,990.
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We compare the test statistic to an F-distribution 
with 5 and 99,990 degrees of freedom.
The null hypothesis is to use the simpler model.
The alternate hypothesis is to use the more 
complex model including credit score.
We reject the null hypothesis when 
the F-Statistic is big.
Comment: Using a computer, 
the p-value of this test is 0.09%.
Thus one would use 
the more complex model including credit score 
rather than the simpler model.
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P. 318!! AIC and BIC: 
AIC and BIC 
are each methods of comparing models. 
In each case, a smaller value is better.
AIC = (-2) (maximum loglikelihood) 
! ! ! + (number of parameters) (2).
The number of parameters fitted 
via maximum likelihood are the betas 
(slopes plus if applicable an intercept).  
Since the deviance = 
(2) (saturated max. loglike. - max. loglike. model), 
we can compare between the models: 
Deviance +  (number of parameters) (2).  
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BIC = (-2) (maximum loglikelihood) 
! + (number of pars.) ln(number data points).
We can compare between the models: 
Deviance +  
! (number of pars.) ln(number data points).

“As most insurance models are fit on very large 
datasets, the penalty for additional parameters 
imposed by BIC tends to be much larger than the 
penalty for additional parameters imposed by AIC. 
In practical terms, the authors have found that 
AIC tends to produce more reasonable results. 
Relying too heavily on BIC 
may result in the exclusion of 
predictive variables from your model.”
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Use the following information for the next 2 questions:
Three Generalized Linear Models have been fit to the 
same set of 5000 observations.

Model Number of 
Fitted Parameters LogLikelihood

 A 5 -9844.16
 B 10 -9822.48
 C 15 -9815.70

3.151. (1 point) Which model has the best AIC 
(Akaike Information Criterion)?

3.152. (1 point) Which model has the best BIC 
(Bayesian Information Criterion)?
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3.151.  AIC = (-2) (maximum loglikelihood) + 
! ! ! ! ! (number of parameters)(2).
For Model A: 
AIC = (-2)(-9844.16) + (5)(2) = 19,698.32.
Model # of Parameters Loglikelihood AIC

A 5 -9844.16 19,698.32
B 10 -9822.48 19,664.96
C 15 -9815.70 19,661.40

Since AIC is smallest for model C, 
model C is preferred.
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3.152.  BIC = (-2) (maximum loglikelihood) + 
 (number of parameters) ln[number of data points].
For Model A: 
BIC = (-2) (-9844.16) + 5 ln[5000] = 19730.91.
Model # of Parameters Loglikelihood BIC

A 5 -9844.16 19,730.91
B 10 -9822.48 19,730.13
C 15 -9815.70 19,759.16

Since BIC is smallest for model B, 
model B is preferred.
Comment: Similar to 8, 11/16, Q.7. 
“As most insurance models are fit on very large datasets, 
the penalty for additional parameters imposed by BIC 
tends to be much larger than the penalty for additional 
parameters imposed by AIC. 
In practical terms, the authors have found that AIC tends 
to produce more reasonable results. 
Relying too heavily on BIC may result in the exclusion of 
predictive variables from your model.”
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P. 322  ! Deviance Residuals: 
The (ordinary) residuals are the difference 
between the observed and fitted values.
Deviance Residuals are based on the form of the 
deviance for the particular distribution. Since the 
syllabus reading does not discuss these forms, 
you are not responsible for them on this exam. 
The square of the deviance residual is 
the corresponding term in the sum that is 
the Deviance. (Syllabus reading is wrong!)
We take the sign of the deviance residual as 
the same as that of the (ordinary) residual 
yi - µ̂i.
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“We can think of the deviance residual as 
the residual adjusted for the shape of 
the assumed GLM distribution, such that 
its distribution will be approximately Normal 
if the assumed GLM distribution is correct.”

If the fitted model is appropriate, then we expect:
● The deviance residuals should follow 
! no predictable pattern.  
● The deviance residuals should be 
! Normally distributed, 
! with constant variance. 
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A GLM was fit using a Gamma Distribution.

! !

In the histogram, the deviance residuals 
do not seem close to the best fit Normal.
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!

In the Normal Q-Q plot, the deviance residuals are 
not near the comparison straight line.
We conclude that the deviance residuals are not 
Normal and therefore the Gamma Distribution is 
probably not a good choice to model this data.

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 124
 



Page 337 ! Working Residuals:
Working residuals are another useful type of 
residual, which can be used to analyze the 
appropriateness of a fitted GLM.
The form of the deviance residuals depends on 
the distributional form used in the model. 
The form of the working residuals instead depends 
on the link function used in the model. 
Working Residual is: 
! ! ! ! wri = (yi - μi) g’(μi).

Exercise: What is the form of the working residual 
for the identity link function?
[Solution: g(µ) = µ. ⇒ g’(µ) = 1. 
⇒ wri = yi - µi = ordinary residual.]
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Exercise: What is the form of the working residual 
for the log link function?
[Solution: g(µ) = ln(µ). 
⇒ g’(µ) = 1/µ. ⇒ wri = (yi - µi) / µi.]

Exercise: A GLM has been fit. The fifth response is 
0.8, and the corresponding prediction is 0.6.
Determine the fifth working residual for each of the 
following cases:
Identity Link Function, and Log Link Function.
[Solution: For the Identity Link Function: 
0.8 - 0.6 = 0.2.
For the Log Link Function: (0.8 - 0.6)/0.6 = 0.333.]
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As has been discussed, graphing residuals is 
useful. However, most insurance models have 
thousands or even millions of observations, 
making such graphs much less useful.
It can very useful to bin the working residuals. 
One groups together similar values on the x-axis 
(of the intended plot), and then takes a weighted 
average of the corresponding working residuals. 
“Binning the residuals aggregates away the 
volume and skewness of individual residuals, and 
allows us to focus on the signal.”
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In order to take this weighted average of 
working residuals within each bin, 
one uses working weights:
! ! ! ! ! wwi = ωi

V(µi) g'(µi)2
.

The working weight depends on the weights 
assigned in the model to each observation as well 
as the link function and the distributional form. 
Here is the form for some examples:
!
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It can be useful to plot working residuals versus: 
the Linear Predictor, Values of a Predictor 
Variable, or the Weight Variable. Ideally we should 
detect no pattern in these residual plots. 
Any such pattern may reveal flaws in the GLM.

Plotting the working residuals versus the value of 
the linear predictor, xβ, may reveal places where 
the model is systematically underpredicting or 
overpredicting.
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Here are two examples of such plots:

In the left-hand plot, the points form 
an uninformative cloud with no apparent pattern, 
as they should for a well-fit model. 
In contrast, the right-hand plot displays a pattern. 
The dots near the middle tend to be higher, 
while those on either side tend to be lower. 
The model has a tendency to underpredict in the 
middle region, and to overpredict on either side. 
Thus this model is not so good.
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3.191. (2.5 points) An actuary has fit a GLM using 
a Poison Distribution with log link function. 
Exposures were used as the weights.
The actuary is creating a plot of working residuals 
in order to assess the model fit.
The following eight observations will be binned 
together.
Compute the binned working residual for this bin.

Observed Predicted Exposures
4 3.3 11
3 3.7 9
6 5.5 15
2 4.1 7
5 5.2 12
4 3.4 8
2 2.6 14
4 3.0 10
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3.191.  working residual: wri = (yi - μi) g’(μi).
For the log link function: g(µ) = ln(µ). 
⇒ g’(µ) = 1/µ. ⇒ wri = (yi - µi)/µi.

working weights: wwi = ωi
V(µi) g'(µi)2

.

For the Poisson: V(µ) = µ. ⇒ wwi = ωi μi.

wri wwi = ωi (yi - µi).
Thus the numerator of the weighted average is 
the sum of the product of the working residuals 
and working weights: 
(11) (4 - 3.3) + (9) (3 - 3.7) + (15) (6 - 5.5) 
! + (7) (2 - 4.1) + (12) (5 - 5.2) + (8) (4 - 3.4) 
! + (14) (2 - 2.6) + (10) (4 - 3.0) = -1.8.
The denominator of the weighted average is 
the sum of the working weights: 
(11) (3.3) + (9) (3.7) + (15) (5.5) + (7) (4.1) 
! + (12) (5.2) + (8) (3.4) + (14) (2.6) + (10) (3.0) 
! = 336.8.
The binned working residual is: 
-1.8 / 336.8 = -0.00534.
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P. 343!! Assessing Model Stability: 
The predictions of the model should not be overly 
sensitive to small changes in the data.
An influential observation is such that its 
removal from the data set causes a significant 
change to our modeled results. 
The larger the value of Cook’s distance, 
the more influential the observation. 

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 133
 



Cross-validation, can also be used to assess 
the stability of a GLM.
For example, we can divide the data into ten parts.
By combining these parts, we can create 10 
different subsets each of which contains 90% of 
the total data. We then fit the model to each of 
these ten subsets. 
The results of the models fit to these different 
subsets of the data ideally should be similar. 
The amount by which these results vary is 
a measure of the stability of the model. 
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Bootstrapping via simulation can also be used to 
assess the stability of a GLM.  
The original data is randomly sampled with 
replacement to create a new set of data of the 
same size. 
One then fits the GLM to this new set of data. 
By repeating this procedure many times 
one can estimate the distribution 
of the parameter estimates of the GLM.
“Many modelers prefer bootstrapped confidence 
intervals to the estimated confidence intervals 
produced by statistical software in GLM output.”
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3.23. (0.5 points) Discuss the following graph of 
Cook’s Distance for 26 observations:

!  
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3.23.  The observation for Slovakia 
has by far the biggest Cook’s Distance, 
and is thus the most influential. 
The observations for the Czech Republic and 
Slovenia are less influential than Slovakia, 
but more influential than the others.

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 137
 



Page 344 ! Scoring Models: 
We have a rating plan or rating plans. 
We may not know what model if any that 
the plan(s) came from.
We wish to evaluate a rating plan 
or compare two rating plans.
Methods that are discussed: 
Plots of Actual vs. Predicted, 
Simple Quantile Plots, 
Double Lift Charts, 
Loss Ratio Charts, 
the Gini Index, 
and ROC Curves.
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Plots of Actual versus Predicted:
Create a plot of the actual target variable 
(on the y-axis) 
versus the predicted target variable (on the x-axis) 
for each model. 
If a model fits well, then the actual and predicted 
target variables should follow each other closely. 
These plots should not use data that was used to 
fit or train the models. 
It is common to group the data, 
for example into percentiles. 
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Measuring Model Lift: 
Lift refers to a model’s ability to prevent 
adverse selection, measuring the approximate 
“economic value” of the model.   
Lift measures a model’s ability to charge 
each insured an actuarially fair rate, thereby 
minimizing the potential for adverse selection. 
Model lift should always be measured 
on holdout data.
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Simple Quantile Plots:
To create a quantile plot of a model.
1. Sort the dataset based on the model predicted 
! loss cost from smallest to largest.
2. Group the data into quantiles with 
! equal volumes of exposures.  
3. Within each group, calculate the average
! predicted pure premium based on the model,
! and the average actual pure premium.
4. Plot for each group, the actual pure premium 
! and the predicted pure premium.
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To compare the models:
1. Predictive accuracy. 
2. Monotonicity. 
! The actual pure premium should increase. 
3. Vertical distance between 
! the first and last quantiles. 

“A large difference (also called “lift”) between the 
actual pure premium in the quantiles with the 
smallest and largest predicted loss costs indicates 
that the model is able to maximally distinguish the 
best and worst risks.”
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1. Predictive accuracy: 
the proposed model does a better job of 
predicting.
2. Monotonicity: the current plan has a reversal in 
the 6th decile, whereas the proposed model
does better with no significant reversals.

   

3. Vertical distance between the first and last 
quantiles: The spread of actual loss costs
for the current plan is 0.55 to 1.30. 
The spread of the proposed model is 0.40 to 1.60, 
which is larger and thus better.
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Double Lift Charts: 
A double lift chart directly compares two 
models A and B. 
To create a double lift chart:
1. For each observation, calculate 
! Sort Ratio = Model A Predicted Loss Cost

Model B Predicted Loss Cost
. 

2. Sort the dataset based on the Sort Ratio, 
! from smallest to largest.
3. Group the data.  
4. For each group, calculate the pure premiums: 
! predicted by Model A, predicted by Model B, 
! and actual. Then divide the group average 
! by the overall average.
5. For each group, plot the three relativities 
! calculated in the step 4.
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The first group contains those risks which 
Model A thinks are best relative to Model B, 
while the last group contains those risks which 
Model B thinks are best relative to Model A. 
The first and last groups contain those risks on 
which Models A and B disagree the most in 
percentage terms.
The “winning” model is the one that more closely 
matches the actual pure premiums. 
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!

The proposed model more accurately predicts 
actual pure premium by decile than does the 
current rating plan. This is particularly clear when 
looking at the extreme groups on either end.
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Loss Ratio Charts: 
To create a loss ratio chart:
1. Sort the dataset based on the model prediction.
2. Group the data into quantiles with 
! equal volumes of exposures.
3. Within each group, 
! calculate the actual loss ratio.

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 147
 



The proposed model is able to segment the data 
into lower and higher loss ratio buckets, 
indicating that the proposed model is better than 
the current model. 
“The advantage of loss ratio charts over 
quantile plots and double lift charts is that they are 
simple to understand and explain.” 
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3.13. (1 point) You are given a double lift chart, 
sorted by ratio of the model prediction over the 
current plan prediction. Discuss the lift of the 
proposed model compared to the current plan.
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3.13.  It is clear that the proposed model more 
accurately predicts actual pure premium by decile 
than does the current rating plan. 
Specifically, consider the first decile. It contains the 
risks that the model thinks are best relative to the 
current plan. As it turns out, the model is correct. 
Similarly, in the 10th decile, the model more 
accurately predicts pure premium than does 
the current plan.
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3.58. (1 point) You are given the following loss 
ratio chart for a proposed rating plan. 
Discuss the lift of the proposed plan compared 
to the current plan.
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3.58.  If  the current rating plan were perfect, 
then all risks should have the same loss ratio. 
The fact that the proposed model is able to 
segment the data into lower and higher loss ratio 
buckets is a strong indicator that it is 
outperforming the current rating plan.
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3.128. (1.5 points) An insurer uses a GLM for 
classification ratemaking. The insurer is 
considering using a different GLM instead. 
You are given the following data on five insureds.

Insured
Actual 
Loss 
Cost

Loss Cost 
Predicted by

Proposed Model

Earned 
Premium at 

Present Rates

1 28,000 26,000 43,000

2 25,000 32,000 49,000

3 42,000 37,000 57,000

4 36,000 43,000 61,000

5 48,000 41,000 66,000
Construct a Loss Ratio Chart that management 
can use to assess lift. !
Identify the basis of sorting the data.
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3.128.  Sort the data based on the loss ratio 
predicted by the proposed model.

Insur
ed

Actual
Loss 
Cost

Actual
Loss 
Ratio

Model
Loss 
Cost

Model
Loss 
Ratio

Earned 
Premium at 

Present Rates
1 28,000 65.1% 26,000 60.5% 43,000
2 25,000 51.0% 32,000 65.3% 49,000
3 42,000 73.7% 37,000 64.9% 57,000
4 36,000 59.0% 43,000 70.5% 61,000
5 48,000 72.7% 41,000 62.1% 66,000

For the proposed model, 
the order of predicted loss ratios is: 1, 5, 3, 2, 4.
The corresponding actual loss ratios are: 
65.1%, 72.7%, 73.7%, 51.0%, 59.0%.
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The corresponding actual loss ratios are: 
65.1%, 72.7%, 73.7%, 51.0%, 59.0%.

Comment: Similar to 8, 11/19, Q.2a.  
One would work with many more than 
5 observations; I would not draw any conclusions 
based on such a small amount of data. 
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Page 359!! Gini Index:
The Gini index is a measure of inequality. 
For example if all of the individuals in a group 
have the same income, then the Gini index is zero. 
As incomes of the individuals in a group became 
more and more unequal, the Gini index would 
increase towards a value of 1.  
The Lorenz curve would graph percent of people 
versus percent of income. 

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 156
 



Label the areas in the graph of a Lorenz Curve:

Gini Index = Area A
Area A + Area B

 = 2A 

! = twice the area between 
! ! the Lorenz Curve and the line of equality. 
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P. 361!!  ! Gini Index and Rating Plans: 
Assume we have a rating plan. 
Ideally we would want the model to identify those 
insureds with higher expected pure premiums.
The Lorenz curve for the rating plan 
! is determined as follows:
1. Sort the dataset based on 
! the model predicted loss cost.  
2. On the x-axis, plot the cumulative 
! percentage of exposures.
3. On the y-axis, plot the cumulative
! percentage of losses.
Draw a 45-degree line connecting (0, 0) and (1, 1), 
called the line of equality.
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!
This model identified 60% of exposures which 
contribute only 20% of the total losses. 
The Gini index is twice the area between the 
Lorenz curve and the line of equality, 
in this case 56.1%.  
The higher the Gini index, the better the model 
is at identifying risk differences.
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3.154. (4 points) A GLM has been used to develop an 
insurance rating plan. The results are given below:
 

Risk Exposures Model Predicted 
Pure Premium

Actual Pure 
Premium

1 3 7000 6000
2 7 1000 4000
3 8 4000 2000
4 11 5000 8000
5 12 3000 1000
6 16 6000 8000
7 19 8000 6000
8 24 2000 4000

 

Plot the Lorenz curve for this rating plan. Label each 
axis and the coordinates of each point on the curve. 
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3.154.  Sort the risks from best to worst based on the model 
predicted pure premium.

Risk Model P.P. Exposures Cumulative
Exposures

Cumulative
% of Exposures

2 1000 7 7 7%
8 2000 24 31 31%
5 3000 12 43 43%
3 4000 8 51 51%
4 5000 11 62 62%
6 6000 16 78 78%
1 7000 3 81 81%
7 8000 19 100 100%
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Risk Exposures Actual 
P.P.

Actual
Losses

Cumulative
Losses

Cumulative
% of Losses

2 7 4000 28,000 28,000 5.6%
8 24 4000 96,000 124,000 24.8%
5 12 1000 12,000 136,000 27.2%
3 8 2000 16,000 152,000 30.4%
4 11 8000 88,000 240,000 48.0%
6 16 8000 128,000 368,000 73.6%
1 3 6000 18,000 386,000 77.2%
7 19 6000 114,000 500,000 100.0%

On the x-axis, plot the cumulative percentage 
of exposures.
On the y-axis, plot the cumulative percentage 
of actual losses.
The plotted points are: (0, 0), (7%, 5.6%), 
(31%, 24.8%), ... , (81%, 77.2%), (100%, 100%).
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(7, 5.6)

(31, 24.8)

(43, 27.2)
(51, 30.4)

(62, 48)

(78, 73.6)

20 40 60 80 100% of Expos

20

40

60

80

100
% of Losses

(81, 77.2)

Comment: Similar to 8, 11/16, 5a.
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Page 366! ! ROC Curves: 
Receiver Operating Characteristic (ROC) 
Curves can be used to compare models that 
use the Bernoulli or Binomial Distribution. 
The first step is to pick a threshold. 
For example, if the discrimination threshold 
were 8%, then we look at all cells with 
the fitted probability of an event > 8%, 
in other words qi > 8%.  
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Then we count up the number of times there was 
an event when an event was predicted. 
For example, there might be 3740 such true 
positives. Assume that there 4625 total events. 
Then the “sensitivity” is the ratio: 
3740 / 4625 = 0.81.
Above a given threshold, 
the sensitivity is the portion of the time that an 
event was predicted by the model out of all the 
times there is an event = 
! ! ! ! ! true positives

total times there is an event
.  

Sensitivity is the rate of true positives.
All other things being equal, 
higher sensitivity is good.
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Then we look at all cells with the fitted probability 
of an event ≤ 8%, in other words qi ≤ 8%.  
For example, there might be 54,196 such policies 
without an event. Assume there are a total of 
63,232 policies without an event. Then the 
“specificity” is the ratio: 54,196/63,232 = 0.85.
Below a given threshold, the specificity is 
the portion of the time that an event was not 
predicted by the model out of all of the times 
these is not an event = 
! ! ! ! ! true negatives

total times there is not an event
.  

1 - specificity is the rate of false positives.
All other things being equal, 
higher specificity is good.
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If one has a model to predict the probability of a 
claim being fraudulent, then for a given threshold:

Sensitivity = correct predictions of fraud
total number of fraudulent claims

.

Specificity = correct predictions of no fraud
total number of non-fraudulent claims

.

This might be a good example to keep in mind.
See 8, 11/17, Q.6.
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For this example, for a threshold of 8%, we can 
display the information in a confusion matrix: 

Discrimination Threshold: 8%Discrimination Threshold: 8%Discrimination Threshold: 8%Discrimination Threshold: 8%
PredictedPredicted

Actual Event No Event Total
Event 3740 884 4625

No Event 9036 54,196 63,232
Total 12,776 55,080 67,856

The general form of a confusion matrix:
PredictedPredicted

Actual Event No Event
Event true positive false negative

No Event false positive true negative
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Discrimination Threshold: 8%Discrimination Threshold: 8%Discrimination Threshold: 8%Discrimination Threshold: 8%
PredictedPredicted

Actual Event No Event Total
Event 3740 884 4625

No Event 9036 54,196 63,232
Total 12,776 55,080 67,856

Sensitivity = true positives
total times there is an event

! ! !  = 3740 / 4625 = 0.81.
Specificity = true negatives

total times there is not an event
 

! ! !  = 54,196 / 63,232 = 0.85.
In the ROC Curve we plot the point: 
(1 - 0.85, 0.81) = (0.15, 0.81). 
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The ROC curve consists of plotting 
for various thresholds: 
(1 - specificity , sensitivity). 
In addition, there is a 45% comparison line 
from (0, 0) to (1, 1).
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An example of an ROC curve: 
!

A perfect model would be at (0, 1) in the upper 
lefthand corner; sensitivity = 1 and specificity = 1.
The closer the model curve gets to 
the upper lefthand corner the better.
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The comparison line indicates a model with 
sensitivity = 1 - specificity, which can be achieved 
by just flipping a coin to decide your prediction. 
Thus such models have no predictive value.
The closer the model curve gets to the 45 degree 
comparison line the worse the model.
AUROC is the area under the ROC curve; 
the larger AUROC the better the model.  
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3.15. (1 point) 
A logistic regression has been fit to some data. 
For a certain threshold:

Predicted ClaimsPredicted Claims
No Yes Total

Actual No 6000 2000 8000
Claim Yes 300 700 1000

Total 6300 2700 9000
What point would be plotted in the ROC curve?
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Predicted ClaimsPredicted Claims
No Yes Total

Actual No 6000 2000 8000
Claim Yes 300 700 1000

Total 6300 2700 9000

3.15.  The sensitivity is: 
true positives

total times there is an event
 = 700 / 1000 = 0.70. 

The specificity is: true negatives
total times there is not an event

 

= 6000 / 8000 = 0.75.
For this threshold, we graph the point: 
(1 - specificity , sensitivity) = (0.25, 0.70).
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3.186. (0.5 point) 
A claim fraud GLM has been developed.
Briefly describe how the severity of claims 
will impact the selection of an appropriate 
discrimination threshold to use together 
with the model.
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3.185.  The larger the average severity, 
the more worthwhile it is for the insurer to spend 
money to investigate cases of possible fraud. 
If claims are more severe, 
then the insurer will be more concerned 
about false negatives 
(cases where there is fraud but the modeled 
probability of fraud is below the threshold), 
than it would be about false positives 
(cases where there is not fraud but the modeled 
probability of fraud is above the threshold). 
Therefore, the more severe the claims, 
the lower the discrimination threshold 
that should be selected.
Comment: Similar to 8, 11/19, Q. 5d.
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Page 373!! Model Documentation:
Documenting your work as you go along is useful 
and important, when developing GLMs 
or doing other actuarial work.  
Serves at least three purposes:
● To serve as a check on your own work, 
! and to improve your communication skills
● To facilitate the transfer of knowledge to 
! the next owner of the model
● To comply with the demands of internal 
! and external stakeholders
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To meet the needs of these stakeholders, your 
documentation should:
● Include everything needed to reproduce 
! the model from source data to model output
● Include all assumptions and justification for 
! all decisions
● Disclose all data issues encountered and 
! their resolution
● Discuss any reliance on external models or 
! external stakeholders
● Discuss model performance, structure, 
! and shortcomings
● Comply with ASOP 41 
! or local actuarial standards on communications 
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Page 375!! Coverage Options:
Insureds can choose coverage options such as 
deductible amount or limit of liability. 
To the extent that the factor indicated by the GLM 
differs from the pure effect on loss potential, 
it will affect the way insureds choose coverage 
options in the future. 
Thus, the selection dynamic will change and 
the past results would not be expected to be 
replicated for new policies.
Thus factors for coverage options should be 
estimated outside the GLM, 
using traditional actuarial techniques.  
The resulting factors should then be included in 
the GLM as an offset.
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Territory Modeling: 
It is unclear whether the authors are discussing determining 
territory relativities, or constructing territories from smaller 
geographical units such as zipcode, or doing both together.

Territories are not a good fit for 
the GLM framework. 
One should include the territory relativities 
produced by the separate model as an offset in the 
GLM used to determine classification relativities.
Similarly, one should include classification 
relativities produced by the GLM 
as an offset in the separate model 
used to determine territory relativities. 
Ideally this should be an iterative process. 
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Ensembling:
Two (or more) teams model the same item; 
they build separate models working independently.
The models are evaluated and found to be 
approximately equal in quality.
Combining the answers from both models 
is likely to perform better than 
either individually. 
A model that combines information from two 
or more models is called an ensemble model.
A simple means of ensembling is to average 
the separate model predictions.

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 181
 



3.204. (9, 11/03, Q.25a) (1 point) 
Explain why one-way analysis of 
risk classification relativities can produce 
indicated relativities that are inaccurate and 
inconsistent with the data. 
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9, 11/03, Q.25a
One-way or univariate analysis does not 
accurately take into account the effect of other 
rating variables. 
It does not consider exposure correlations with 
other rating variables.
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3.205. (9, 11/06, Q.5) (4 points) 
a. (3 points) Compare the random component, the 
systematic component, and the link functions of a 
linear model to those of a generalized linear 
model. 
b. (1 point) Describe two reasons why the 
assumptions underlying linear models are difficult 
to guarantee in application. 
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9, 11/06, Q.5!! a. Linear Model:
● Random Component: Each component of Y is 
! independent and normally distributed.
! Their means may differ, but they have common 
! variance.
● Systematic Component: The covariates are 
! combined to produce the linear predictor 
! η = Xβ.
● Link Function: The relationship between 
! the random component and 
! the systematic component
! is specified with the identity link function: 
! E(Y) = µ = η.
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Generalized Linear Model:
● Random Component: Each component of Y is 
! independent and a member of an exponential
! family. (While the Normal is one possibility, 
! there are others.)
● Systematic Component: The covariates are 
! combined to produce the linear predictor 
! η = Xβ.
● Link Function: The relationship between 
! the random component and 
! the systematic component is
! specified with the link function, 
! which is differentiable and monotonic such that: 
! E(Y) = µ = g-1(η).  (While the identity link 
! function is one possibility, there are others.)
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b) 
1) The assumption of normality with common 
! variance is often not true.
2) Sometimes the response variable may be 
! restricted to be positive, but normality with 
! the identity link function violates this.
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3.60a (2.5 points)
The observed claim frequencies for urban vs rural 
and male vs female drivers are:

Claim frequency Urban Rural
Male 0.200 0.100

Female 0.125 0.050
There are equal exposures in each of 
the four cells.
We will fit a GLM using a Poisson Distribution.
For an additive model, determine the maximum 
Iikelihood equations to be solved.
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3.60a.  Many ways to define the variables.
Let us define X1 = 1 if male and zero otherwise.
X2 = 1 if female and zero otherwise.
X3 = 1 if urban and zero otherwise.

For the Poisson, f(x) = λx e-λ / x!.  
ln f(x) = x ln(λ) - λ - ln(x!) = x ln(µ) - µ - constants.
We use an identity link function.  
The estimated means are:
! ! ! Urban ! ! Rural
Male ! ! β1 + β3 ! ! β1
Female ! β2 + β3 ! ! β2

Ignoring constants, the loglikelihood is: 
0.2 ln(β1 + β3) - (β1 + β3) + 0.1 ln(β1) - β1 
  + 0.125 ln(β2 + β3) - (β2 + β3) + 0.05 ln(β2) - β2.
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0.2 ln(β1 + β3) - (β1 + β3) + 0.1 ln(β1) - β1 
  + 0.125 ln(β2 + β3) - (β2 + β3) + 0.05 ln(β2) - β2.

Setting the partial derivative with respect to β1 
equal to zero: 0.2 / (β1 + β3) + 0.1 / β1 = 2. 

Setting the partial derivative with respect to β2 
equal to zero: 0.125 / (β2 + β3) + 0.05 / β2 = 2. 

Setting the partial derivative with respect to β3 
equal to zero: 0.2/  (β1 + β3) + 0.125 / (β2 + β3) = 2.

Comment: Using a computer, the fitted parameters 
are: β1 = 0.105556, β2 = 0.047500, β3 = 0.084444.

Fitted frequencies are: 
! 0.1900, 0.1056, 0.1319, 0.0475.
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3.50. (2 points) 
There are three age groups of cars: A, B, C.
There are also three size categories of cars: 
small, medium, large.
Specify the following structural components of a 
generalized linear model. 
i. Design matrix
ii. Vector of model parameters 
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3.50.  Let X1 = 1 if age group A, and 0 otherwise.
X2 = 1 if age group B, and 0 otherwise.
X3 = 1 if small, and 0 otherwise.
X4 = 1 if medium, and 0 otherwise.
X5 = 1 if large, and 0 otherwise.
Then the design matrix is: 

A/small
A/medium
A/large
B/small
B/medium
B/large
C/small
C/medium
C/large

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ⇔ 

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.
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For example, the first row corresponds to age 
group A and small: 
X1 = 1, X2 = 0, X3 = 1, X4 = 0, and X5 = 0.

The last row corresponds to age group C and 
large: X1 = 0, X2 = 0, X3 = 0, X4 = 0, and X5 = 1.

The vector of parameters is: 

β1
β2
β3
β4
β5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.
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Alternately, define medium and age group C 
as the base level. Then the constant, β0, 
would apply to all observations.
Let X1 = 1 if age group A, and 0 otherwise.
X2 = 1 if age group B, and 0 otherwise.
X3 = 1 if small, and 0 otherwise.
X4 = 1 if large, and 0 otherwise.
Then the design matrix is: 

A/small
A/medium
A/large
B/small
B/medium
B/large
C/small
C/medium
C/large

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ⇔ 

1 1 0 1 0
1 1 0 0 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 0
1 0 1 0 1
1 0 0 1 0
1 0 0 0 0
1 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.
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The first column of ones corresponds to the 
constant term which applies to all observations.
For example, the first row corresponds to 
age group A and small: 
X0 = 1, X1 = 1, X2 = 0, X3 = 1, X4 = 0.

The last row corresponds to age group C and 
large: X0 = 1, X1 = 0, X2 = 0, X3 = 0, X4 = 1.

The vector of parameters is: 

β0
β1
β2
β3
β4

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.
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Comment: There is no unique answer.
I have given two out of the many possible 
answers.
There are 3 age categories and 3 size categories, 
so we need to have either 3 + 3 - 1 = 5 covariates, 
or 4 covariates and a constant term.
The response vector would have 9 rows and one 
column, containing the observations in the same 
order as the rows of the design matrix.
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3.207b (9, 11/08, Q.3) (1 point) An actuary is using 
a Generalized Linear Model to determine possible 
interactions between pure premiums. While 
reviewing the model, the actuary observes the 
following pure premiums for liability coverage: 
! ! !    Liability Pure Premium 
! ! ! !    Vehicle Size 
Territory ! Small !! Medium ! Large 
North !! 100 ! ! 150 ! ! 250 
South !!   80 ! ! 110 ! ! 290 
East ! !   90 ! ! 170 ! ! 200 
West ! ! 180 ! ! 260 ! ! 540 
Assuming equal exposure distribution across all 
combinations of territory and vehicle size, 
demonstrate how aliasing can be used to exclude 
a level from either the territory or the vehicle size 
variable. 
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9, 11/08, Q.3. b. We have that 
[all cars] - large cars - medium cars = small cars, 
so we can say that Xsmall = 1 - Xlarge - Xmedium. 
If we do not have a base level,
then we could have two size variables such as 
Large and Medium, plus all four territories.
We have that [all cars] - North - South - West = 
East, so we can say that 
XEast = 1 - XNorth - XSouth - XWest. 
If we do not have a base level,
then we could have three territory variables such 
as North, South, and West, plus all three sizes.
Alternately, we can eliminate bsmall and bEast 
from the model and include an intercept term; 
Small / East would be the base level.
Intercept plus 2 size and 3 territory variables.
Comment: Should end up with 6 variables in total.
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3.136. (2 points) Below are graphs of GLMs fit to 
Homeowners frequency data, showing the natural log 
of the fitted multiplicative factors for one or two children 
in the house relative to none. 
Also shown are approximate 95% confidence intervals.
Briefly compare and contrast what the two graphs tell 
the actuary about each model.
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3.136.  In the first graph for liability losses, 
the number of children seems to have a significant 
impact on frequency. The 95% confidence intervals 
do not include a log of the multiplier of 0; in other 
words the multiplier is significantly different from one. 
Also while one child increases the frequency 
compared to none, two children also increase the 
frequency compared to one. 
It seems as if the number of children in 
the household is a useful variable for modeling 
liability frequency for Homeowners.
In the second graph for wind losses, the number of 
children seems to have a insignificant impact on 
frequency. The 95% confidence intervals do include 
a log of the multiplier of 0; in other words the 
multiplier is not significantly different from one. Also 
while one child increases the frequency compared to 
none, two children decreases the frequency 
compared to one. The number of children in the 
household is not a useful variable for modeling wind 
frequency for Homeowners.

2022-CAS8! ! Presentation,  §3 Generalized Linear Models    !  HCM 4/28/22,   Page 201
 



Comment: There is no logical relationship between 
the number of children and wind losses.
A child (or any relative) who lives in the house is 
covered for any liability claim he or she causes.
Also having children in the house may lead to more 
neighborhood children coming on your property with 
the potential for liability claims if they are injured on 
your property. Thus there is some logical relationship 
between the number of children in the household 
and the frequency of liability claims for Homeowners.
Presumably, the liability relativity for three children 
would be higher than for two children.
(Three children was not shown in the graph in order 
to keep things simple.)
One would want to apply statistical tests to see if the 
number of children in the household is a useful 
variable for modeling liability frequency. Also one 
would want to check the consistency over time of the 
indicated relativities.
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3.130. (2 points) Geoff Linus Modlin is an actuary 
using Generalized Linear Models (GLMs) to 
determine classification rates for private 
passenger automobile insurance. 
(a) Geoff notices that the relativity for drivers aged 
19 from a GLM is different than that from a
univariate analysis of age based on the same 
data. Briefly discuss why that can be the case.
(b) Geoff notices that the relativity for drivers aged 
19 is different between two GLMs based on the
same data. 
Briefly discuss why that can be the case.
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3.130. (a) This is probably due to the defects of 
univariate methods. Univariate methods take into 
account neither the correlation of exposures 
between dimensions, or the interaction of effects 
of the predictor variables. Alternately, it may be 
due to the GLM being either overfit or underfit. 
(b) The results of a GLM depend on the choice of 
link functions. So perhaps the two models have 
different link functions. The results of a GLM 
depend on the choice of predictor variables. So 
perhaps the two models have different sets of 
predictor variables other than driver age.
The results of a GLM depend on the choice of the 
assumed distributional form of the errors. 
So perhaps the two models have different 
distributional forms of their errors.
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Comment: Usually the actuary analyzes the 
relativities for driver age assuming all of the other 
predictor variables in the GLM are at the base 
level. If one varies the levels of the other predictor 
variables in the GLM, then relativities between 
driver ages will also usually vary.
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