Section 6, Slide 39, Solution to Q. 6.52, fourth line: (56)(812.5) $=45,500$.
This is okay further down on the slide as well as in my study guide.

Section 8, slides 34: $(1 / 3)(0.5)+(2 / 3)(0.8)=0.7$.

Section 8, slides 34-37 an arrow in the diagram points to the wrong place, corrected below:
Size

Size

Section 9, some questions have the wrong numbers: 9.46 should be 9.58 . 9.41 should be 9.53 . 9.12 should be 9.24 . 9.54 really 9.66 . 9.34 really 9.46 . 9.47 really 9.59 .
9.45 really 9.57 . 9.36 really 9.48 .

Section 23, slide 13 left out information from page 1540 of my study guide:
If the Buhlmann Credibility formula holds, then the three-year credibility is
$Z=3 /(3+K)$, with $K=E P V / V H M$.
For K big compared to 3 , as it is in the situations in Bailey Simon: $Z \cong 3 / K=(3)$ (VHM / EPV).
Let μ be the overall mean frequency, which is also the mean of the hypothetical mean frequencies.
Assume the EPV is (approximately) proportional to the overall mean frequency: EPV $=c \mu$.
Then the ratio of the credibility to the mean frequency is approximately:
(3)(VHM / EPV) / $\mu=(3 / c)$ VHM / μ^{2}.

Thus the ratio of the credibility to the mean frequency is proportional to the square of the coefficient of variation of the hypothetical means: VHM / μ^{2}. Thus the smaller this ratio, the smaller the CV of the hypothetical means, and the less variation between the insureds within a class.
Thus the smaller this ratio of credibility to frequency, the more homogeneous the class.

Section 26, page 55, solution 26.56:

| Midpoint | | Portion Retained | | | 1000K / (midpoint times portion retained) |
| :--- | :--- | :--- | :--- | :--- | :--- | Exposure Factor

Range of Insured Value 100 to 250 250 to 500 500 to 1000 1000 to 1500 1500 to 2000

Net Premium (\$ million) (20) $(100 \%)=20$ $(40)(2 / 3)=26.667$ $(25)(1 / 3)=8.333$ $(10)(0.2)=2$
$(5)(2 / 7)=1.429$

Expected Ceded Losses $(64 \%)(100 \%-100 \%)(20)=0$ $(64 \%)(100 \%-96 \%)(26.667)=0.683$
$(64 \%)(100 \%-96 \%)(8.333)=0.213$
$(64 \%)(100 \%-96 \%)(2)=0.051$
$(64 \%)(100 \%-81 \%)(1.429)=0.174$

Expected ceded losses $=0+0.683+0.213+0.051+0.174=\$ 1.121$ million.

Section 26, page 89, exercise: \$900K xs \$300K.
Section 26, page 92:
The numerator of the exposure factor is:
$(1-\phi)(E[X \wedge \operatorname{Min}[U L+P L, U L+A P+\operatorname{Lim}]]-E[X \wedge \operatorname{Min}[U L+P L, U L+A P]])$ $+\phi(E[X \wedge \operatorname{Min}[P L, A P+\operatorname{Lim}]]-E[X \wedge \operatorname{Min}[P L, A P]])$.
The denominator of the exposure factor is:
$(1-\phi)(E[X \wedge(U L+P L)]-E[X \wedge U L])+\phi E[X \wedge P L]$.

Section 26, page 97-99: AAD not ADD.

